Accurate representations of unknown and sub-grid physical processes through parameterizations (or closure) in numerical simulations with quantified uncertainty are critical for resolving the coarse-grained partial differential equations that govern many problems ranging from weather and climate prediction to turbulence simulations. Recent advances have seen machine learning (ML) increasingly applied to model these subgrid processes, resulting in the development of hybrid physics-ML models through the integration with numerical solvers. In this work, we introduce a novel framework for the joint estimation and uncertainty quantification of physical parameters and machine learning parameterizations in tandem, leveraging differentiable programming. Achieved through online training and efficient Bayesian inference within a high-dimensional parameter space, this approach is enabled by the capabilities of differentiable programming. This proof of concept underscores the substantial potential of differentiable programming in synergistically combining machine learning with differential equations, thereby enhancing the capabilities of hybrid physics-ML modeling.
more »
« less
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Recent advances in differentiable modeling, a genre of physics-informed machine learning that trains neural networks (NNs) together with process-based equations, have shown promise in enhancing hydrological models' accuracy, interpretability, and knowledge-discovery potential. Current differentiable models are efficient for NN-based parameter regionalization, but the simple explicit numerical schemes paired with sequential calculations (operator splitting) can incur numerical errors whose impacts on models' representation power and learned parameters are not clear. Implicit schemes, however, cannot rely on automatic differentiation to calculate gradients due to potential issues of gradient vanishing and memory demand. Here we propose a “discretize-then-optimize” adjoint method to enable differentiable implicit numerical schemes for the first time for large-scale hydrological modeling. The adjoint model demonstrates comprehensively improved performance, with Kling–Gupta efficiency coefficients, peak-flow and low-flow metrics, and evapotranspiration that moderately surpass the already-competitive explicit model. Therefore, the previous sequential-calculation approach had a detrimental impact on the model's ability to represent hydrological dynamics. Furthermore, with a structural update that describes capillary rise, the adjoint model can better describe baseflow in arid regions and also produce low flows that outperform even pure machine learning methods such as long short-term memory networks. The adjoint model rectified some parameter distortions but did not alter spatial parameter distributions, demonstrating the robustness of regionalized parameterization. Despite higher computational expenses and modest improvements, the adjoint model's success removes the barrier for complex implicit schemes to enrich differentiable modeling in hydrology.
more »
« less
- PAR ID:
- 10541021
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 28
- Issue:
- 13
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 3051 to 3077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs.more » « less
-
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. Wortman (Ed.)The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the beginning of the forecast. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce highly effective estimation schemes. We introduce a self-supervised framework, which we call \textit{amortized assimilation}, for learning to assimilate in dynamical systems. Amortized assimilation combines deep learning-based denoising with differentiable simulation, using independent neural networks to assimilate specific observation types while connecting the gradient flow between these sub-tasks with differentiable simulation and shared recurrent memory. This hybrid architecture admits a self-supervised training objective which is minimized by an unbiased estimator of the true system state even in the presence of only noisy training data. Numerical experiments across several chaotic benchmark systems highlight the improved effectiveness of our approach compared to widely-used data assimilation methods.more » « less
-
The optimization of the latents and parameters of diffusion models with respect to some differentiable metric defined on the output of the model is a challenging and complex problem. The sampling for diffusion models is done by solving either the probability flow ODE or diffusion SDE wherein a neural network approximates the score function allowing a numerical ODE/SDE solver to be used. However, naïve backpropagation techniques are memory intensive, requiring the storage of all intermediate states, and face additional complexity in handling the injected noise from the diffusion term of the diffusion SDE. We propose a novel family of bespoke ODE solvers to the continuous adjoint equations for diffusion models, which we call AdjointDEIS. We exploit the unique construction of diffusion SDEs to further simplify the formulation of the continuous adjoint equations using exponential integrators. Moreover, we provide convergence order guarantees for our bespoke solvers. Significantly, we show that the continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE. Lastly, we demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem. Our code will be released at https: //github.com/zblasingame/AdjointDEIS.more » « less
-
Automatic differentiation (AutoDiff) in machine learning is largely restricted to expressions used for neural networks (NN), with the depth rarely exceeding a few tens of layers. Compared to NN, numerical simulations typically involve iterative algorithms like time steppers that lead to millions of iterations. Even for modest-sized models, this may yield infeasible memory requirements when applying the adjoint method, also called backpropagation, to time-dependent problems. In this situation, checkpointing algorithms provide a trade-off between recomputation and storage. This paper presents the package Checkpointing.jl that leverages expression transformations in the programming language Julia and the package ChainRules.jl to automatically and transparently transform loop iterations into differentiated loops. The user may choose between various checkpointing algorithm schemes and storage devices. We describe the unique design of Checkpointing.jl and demonstrate its features on an automatically differentiated MPI implementation of Burgers’ equation on the Polaris cluster at the Argonne Leadership Computing Facility.more » « less
An official website of the United States government

