Continuous monitoring of biochemical information is critical for health management. Hydrogel, a synthetic material that exhibits volumetric response to target stimuli, is an attractive material for such applications. However, wireless readout of the hydrogel's response over a longer distance, while maintaining the small sensor dimension has been challenging. In this work we present ferrogel-based wireless acousto-biochemical sensing system with small dimension (length: 7.5 mm, diameter: 2 mm) and long sensing distance (>10 cm). The sensor utilizes ferromagnetic hydrogel to convert pH to the change in resonance frequency; the wireless measurement is made through the RF signal emission under ultrasonic excitation.
more »
« less
Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer
Abstract Nearly all biosensing platforms can be described using two fundamental steps—collection and detection. Target analytes must be delivered to a sensing element, which can then relay the transduced signal. For point-of-care technologies, where operation is to be kept simple, typically the collection step is passive diffusion driven—which can be slow or limiting under low concentrations. This work demonstrates an integration of both active collection and detection by using resonant wireless power transfer coupled to a nanogap capacitor. Nanoparticles suspended in deionized water are actively trapped using wireless dielectrophoresis and positioned within the most sensitive fringe field regions for wireless impedance-based detection. Trapping of 40 nm particles and larger is demonstrated using a 3.5 VRMS, 1 MHz radiofrequency signal delivered over a distance greater than 8 cm from the nanogap capacitor. Wireless trapping and release of 1 µm polystyrene beads is simultaneously detected in real-time over a distance of 2.5 cm from the nanogap capacitor. Herein, geometric scaling strategies coupled with optimal circuit design is presented to motivate combined collection and detection biosensing platforms amenable to wireless and/or smartphone operation.
more »
« less
- Award ID(s):
- 2227459
- PAR ID:
- 10541047
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50–200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMSfor both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing—known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware — ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology.more » « less
-
This paper presents the design and measurement results of wireless power transfer through soil over a range of soil moisture levels for future low-cost, wireless, battery-less, and in-situ soil health monitoring technologies. A pair of packaged 6 cm-diameter coils can wirelessly transfer 0.56 mW from an external RF power source of 37 mW through a soil depth of 15 cm over a typical moisture level ranging from low 30% to 40%. An optimal frequency of 1.4 MHz and 1 MHz was chosen for an efficient operation in loamy soil and sandy soil, respectively. The demonstrated power transfer is sufficient to energize underground soil health monitoring devices. In addition, a pair of packaged 12 cm-diameter coils, taking the loss contributed by the surrounding soil into design consideration, can achieve a 130 µW power delivery with an efficiency of approximately 8% over a 30 cm air gap. It is expected that a similar performance can be achieved through a 30 cm soil depth.more » « less
-
Wearable devices typically use electromagnetic fields for wireless information exchange. For implanted devices, electromagnetic signals suffer from a high amount of absorption in tissue, and alternative modes of transmission (ultrasound, optical and magneto-electric) cause large transduction losses due to energy conversion. To mitigate this challenge, we report biphasic quasistatic brain communication for wireless neural implants. The approach is based on electro-quasistatic signalling that avoids transduction losses and leads to an end-to-end channel loss of only around 60 dB at a distance of 55 mm. It utilizes dipole-coupling-based signal transfer through the brain tissue via differential excitation in the transmitter (implant) and differential signal pickup at the receiver (external hub). It also employs a series capacitor before the signal electrode to block d.c. current flow through the tissue and maintain ion balance. Since the electrical signal transfer through the brain is electro-quasistatic up to the several tens of megahertz, it provides a scalable (up to 10 Mbps), low-loss and energy-efficient uplink from the implant to an external wearable. The transmit power consumption is only 0.52 μW at 1 Mbps (with 1% duty cycling)—within the range of possible energy harvesting in the downlink from a wearable hub to an implant.more » « less
-
null (Ed.)Wireless power transfer (WPT) has been widely used in IoT applications, such as mobile device charging, biomedical implants communication, and RFID field. Maximizing the power transfer efficiency (PTE) becomes one of the most crucial problems for designing the WPT systems. Magnetic induction (MI) beamforming has been proposed recently to maximize the PTE for the near field MIMO WPT systems. However, conventional magnetic beamforming in WPT systems usually requires accurate magnetic channel estimation, both amplitude and phase control of the charging source, which can not be achieved in an extreme environment. In this paper, we propose a novel magnetic induction beamforming scheme in MIMO WPT system using a reconfigurable metasurface. Instead of controlling the source currents or voltages, the reconfigurable metasurface can achieve near field beamforming only by varying the capacitor and resistance in specific coil array units. The beamforming is modeled as a discrete optimization problem and solved by using the Simulate Anneal (SA) method. Through the analytical and COMSOL simulation results, our proposed beamforming scheme can achieve approximately two times PTE of the conventional beamforming method in a 40 cm charging distance.more » « less
An official website of the United States government

