The metacognitive strategies of planning, monitoring, and evaluating can be promoted through systematic reflection to drive self-directed, lifelong learning. This article reports on a three-year study on systematic written reflection within an undergraduate Fluid Mechanics course to promote planning, monitoring, and evaluation. Students were prompted weekly to reflect on their in-class problem-solving, classroom and exam preparation, performance, behaviors, and learning in a flipped classroom at a large southeastern U.S. university. In addition, they received intentional instruction on how to plan, monitor, and evaluate their problem-solving during class. To enable a comparative assessment, a flipped classroom without these interventions was also implemented as a non-experimental cohort. The cohorts were compared using a final exam, concept inventory, and the Metacognitive Activities Inventory (MCAI). The MCAI indicated a significantly higher positive change (pre- to post-course) in self-regulatory behavior for the experimental cohort ( p = 0.037). The weekly reflections were studied using an inductive content analysis to assess students’ self-regulatory behaviors. They were also used to investigate statistical associations between reflection content and course outcomes. This revealed that academic self-discipline via planning, monitoring one's work, or being careful and diligent may be as aligned with course performance in STEM as is practice with the problem-solving itself. The effects for the final exam in the experimental cohort were positive overall as well as statistically or practically significant for various demographic strata. These results provided evidence for the potential enhancement of course performance with metacognition support. A positive shift in students’ perspectives regarding the value of the reflection questions was observed throughout the study. Therefore, as an implementation guide for other educators, the reflection questions and any changes made in posing them to students are discussed chronologically. Overall, the study points to the desirability of providing metacognition support in a STEM course.
more »
« less
Opportunities for guiding development: insights from first-year life science majors’ use of metacognition
ABSTRACT Students with strong metacognitive skills are positioned to learn and achieve more than peers who are still developing their metacognition. Yet, many students come to college without well-developed metacognitive skills. As part of a longitudinal study on metacognitive development, we asked when, why, and how first-year life science majors use metacognitive skills of planning, monitoring, and evaluating. Guided by the metacognition framework, we collected data from 52 undergraduates at three institutions using semi-structured interviews. We found that first-year students seek study recommendations from instructors, peers, and online resources when they plan their study strategies. First-year students struggle to accurately monitor their understanding and benefit when instructors help them confront what they do not yet know. First-year students evaluate the effectiveness of their study plans at two specific points: immediately after taking an exam and/or after receiving their grade on an exam. While first-year students may be particularly open to suggestions on how to learn, they may need help debunking myths about learning. First-year students acknowledge they are still learning to monitor and welcome formative assessments that help them improve the accuracy of their monitoring. First-year students may be primed to receive guidance on their metacognition at the points when they are most likely to evaluate the effectiveness of their study strategies and plans. Based on our results, we offer suggestions for instructors who want to support first-year students to further develop their metacognition.
more »
« less
- Award ID(s):
- 1942318
- PAR ID:
- 10541207
- Editor(s):
- Wright, L Kate
- Publisher / Repository:
- NSF Public Access Repository
- Date Published:
- Journal Name:
- Journal of Microbiology & Biology Education
- ISSN:
- 1935-7877
- Subject(s) / Keyword(s):
- metacognition, self-regulated learning, first-year students, biology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper ( https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition ), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students’ metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance.more » « less
-
Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were female students. All students stated that they were interested in pursuing a career in engineering. The students were divided into two groups with the first group being the initial pilot run of the data. In this first group there were 24 students, in the second group there were 10 students. The groups’ demographics were nearly identical to each other. Analysis of the collected data indicated that problem-solving skills contribute to metacognitive skills and may develop first in students before larger metacognitive constructs of awareness, monitoring, planning, self-checking, and strategy selection. Based on this, we recommend that the problem-solving skills and expertise in solving engineering problems should be developed in students before other skills emerge or can be measured. While we are sure that the students who participated in our study have awareness as well as the other metacognitive skills in reading, writing, science, and math, they are still developing in relation to engineering problems.more » « less
-
When students repeatedly reflect, it can enhance their metacognitive abilities, including self-regulatory skills of planning, monitoring, and evaluating. In a fluid mechanics course for undergraduates at a large southeastern U.S. university, in-class problem solving in a flipped classroom was coupled with intentional metacognitive skills instruction and repeated reflection to enhance metacognition. The weekly reflective responses were coded by two analysts to identify the recurring themes and uncover evidence of the development and/or reinforcement of self-regulating behaviors for academic management. To enable a comparison, a flipped classroom without the metacognitive instruction and repeated reflection was also implemented (i.e., non-intervention group). The two cohorts completed identical final exams. Based on our preliminary analysis with year one data, a statistically and practically-significant difference between the two cohorts was found with the free-response scores on the final exam in favor of the intervention cohort that had received the metacognitive support ( p < 0.0005; Cohen's d = 0.72). Also, the Metacognitive Activities Inventory (MCAI) indicated a significantly-higher positive change in self-regulatory behavior for the intervention cohort ( p = 0.001; d = 0.50). Focus groups were conducted to gather students’ perspectives on the reflective activity, with differences found by demographic group. In addition, a significantly higher proportion of females (versus males) viewed the reflections in a positive manner ( p = 0.05). Significant associations between themes in the weekly reflections and direct knowledge measures were also uncovered. This included a positive relationship between academic self-management (i.e., diligence and carefulness) and exam performance. Overall, our preliminary results point to a desirable impact of metacognitive instruction and repeated reflection on knowledge outcomes, metacognitive skills, and self-regulatory behaviors.more » « less
-
Schussler, Elisabeth (Ed.)This qualitative study of 52 first-year life science students’ metacognition and self-efficacy in action shows that students monitor in a myriad of ways and use self-coaching to overcome the discomfort associated with being metacognitive while solving challenging biochemistry problems.more » « less
An official website of the United States government

