skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diagnosis of Pediatrics Epilepsy Based on Graph analysis of Scalp EEG Applying Mutual Information
Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7) compared to pediatric control subjects (PC: n=7) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=- 15.9899, p<< 0.0001). Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals.  more » « less
Award ID(s):
2018611
PAR ID:
10541402
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2028-2
Page Range / eLocation ID:
1585 to 1590
Format(s):
Medium: X
Location:
Las Vegas, NV, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7 ) compared to pediatric control subjects (PC: n=7 ) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=−15.9899,p<<0.0001) . Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals. 
    more » « less
  2. Pediatric epilepsy due to drug-resistant Focal Cortical Dysplasia (FCD) presents significant healthcare challenges. Precise preoperative identification of FCD lesions is imperative for surgical planning and patient outcomes. This paper presents a proof-of-concept for an integrated methodology that combines Electroencephalogram (EEG)-based functional connectivity analysis with Magnetic Resonance Imaging (MRI)-derived cortical thickness measurements to identify FCD lesions in pediatric epileptic patients. We examined a single-case clinical scenario from Oregon Health Science and University, consistently identifying the Caudal Middle Frontal (cMFG) region across both EEG and MRI modalities, a finding that was confirmed in the postoperative MRI scan. This cross-validation underscores the potential of the precision of our approach in pinpointing the surgical target region. Despite being constrained by its preliminary nature, our research offers a valuable foundation for a personalized, rigorous method of detecting the location of the FCD lesions. It holds significant clinical implications for managing FCD-related epilepsy. It also portends broader applications in neurology and precision medicine. Nonetheless, further large-scale studies are needed to validate and fine-tune our methodology. Clinical Relevance - This study offers clinicians an advanced, integrated approach to preoperative assessment of FCD lesions, potentially improving the precision of surgical planning in pediatric epilepsy. 
    more » « less
  3. null (Ed.)
    Objective: To demonstrate that combining automatic processing of EEG data using high performance machine learning algorithms with manual review by expert annotators can quickly identify subjects with prolonged seizures. Background: Prolonged seizures are markers of seizure severity, risk of transformation into status epilepticus, and medical morbidity. Early recognition of prolonged seizures permits intervention and reduces morbidity. Design/Methods: We triaged the TUH EEG Corpus, an open source database of EEGs, by running a state-of-the-art hybrid LSTM-based deep learning system. Then, we postprocessed the output to identify high confidence hypotheses for seizures that were greater than three minutes in duration. Results: The triaging method selected 25 subjects for further review. 17 subjects had seizures; only 5 met criteria for seizures greater than 3 minutes. 11 subjects did not have a prior diagnosis of epilepsy. Among these, 63% had acute respiratory failure and 36% had cardiac arrest leading to seizures secondary to anoxic brain injury. 18 (72%) EEGs were obtained in long-term monitoring (LTM), 1 (4%) in the epilepsy monitoring unit (EMU), and 6 (24%) as a routine EEG (rEEG). 72.2% of seizures in LTM were identified correctly versus 66.7% in rEEGs. Of the 9 subjects who were deceased, 7 (78%) had been on LTM. The seizure detection algorithm misidentified seizures in 7 subjects (28%). A total of 22 (88%) subjects had some ictal pattern. Patterns mistaken for seizure activity included muscle artifact, generalized periodic discharges, generalized spike-and-wave, triphasic waves, and interestingly, an EEG recording captured during CPR. Conclusions: This hybrid approach, which combines state-of-the-art machine learning seizure detection software with human annotation, successfully identified prolonged seizures in 72% of subjects; 88% had ictal patterns. Prolonged seizures were more common in LTM subjects than the EMU and were associated with acute cardiac or pulmonary insult. 
    more » « less
  4. Abstract ObjectiveAnterior temporal lobectomy (ATL) is a widely performed and successful intervention for drug‐resistant temporal lobe epilepsy (TLE). However, up to one third of patients experience seizure recurrence within 1 year after ATL. Despite the extensive literature on presurgical electroencephalography (EEG) and magnetic resonance imaging (MRI) abnormalities to prognosticate seizure freedom following ATL, the value of quantitative analysis of visually reviewed normal interictal EEG in such prognostication remains unclear. In this retrospective multicenter study, we investigate whether machine learning analysis of normal interictal scalp EEG studies can inform the prediction of postoperative seizure freedom outcomes in patients who have undergone ATL. MethodsWe analyzed normal presurgical scalp EEG recordings from 41 Mayo Clinic (MC) and 23 Cleveland Clinic (CC) patients. We used an unbiased automated algorithm to extract eyes closed awake epochs from scalp EEG studies that were free of any epileptiform activity and then extracted spectral EEG features representing (a) spectral power and (b) interhemispheric spectral coherence in frequencies between 1 and 25 Hz across several brain regions. We analyzed the differences between the seizure‐free and non–seizure‐free patients and employed a Naïve Bayes classifier using multiple spectral features to predict surgery outcomes. We trained the classifier using a leave‐one‐patient‐out cross‐validation scheme within the MC data set and then tested using the out‐of‐sample CC data set. Finally, we compared the predictive performance of normal scalp EEG‐derived features against MRI abnormalities. ResultsWe found that several spectral power and coherence features showed significant differences correlated with surgical outcomes and that they were most pronounced in the 10–25 Hz range. The Naïve Bayes classification based on those features predicted 1‐year seizure freedom following ATL with area under the curve (AUC) values of 0.78 and 0.76 for the MC and CC data sets, respectively. Subsequent analyses revealed that (a) interhemispheric spectral coherence features in the 10–25 Hz range provided better predictability than other combinations and (b) normal scalp EEG‐derived features provided superior and potentially distinct predictive value when compared with MRI abnormalities (>10% higher F1 score). SignificanceThese results support that quantitative analysis of even a normal presurgical scalp EEG may help prognosticate seizure freedom following ATL in patients with drug‐resistant TLE. Although the mechanism for this result is not known, the scalp EEG spectral and coherence properties predicting seizure freedom may represent activity arising from the neocortex or the networks responsible for temporal lobe seizure generation within vs outside the margins of an ATL. 
    more » « less
  5. Objective: Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. Approach: Twenty-eight healthy subjects were asked to read words in a rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. Main results: The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma band, and peaked earlier in the alpha band compared to the theta band (alpha: 184 +/- 61.48-ms; theta: 237 +/- 65.32-ms, P-value P < 0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. Significance: These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading. 
    more » « less