Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7) compared to pediatric control subjects (PC: n=7) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=- 15.9899, p<< 0.0001). Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals. 
                        more » 
                        « less   
                    
                            
                            An Integrated Approach for Focal Cortical Dysplasia Lesion Validation on Preoperative Assessments
                        
                    
    
            Pediatric epilepsy due to drug-resistant Focal Cortical Dysplasia (FCD) presents significant healthcare challenges. Precise preoperative identification of FCD lesions is imperative for surgical planning and patient outcomes. This paper presents a proof-of-concept for an integrated methodology that combines Electroencephalogram (EEG)-based functional connectivity analysis with Magnetic Resonance Imaging (MRI)-derived cortical thickness measurements to identify FCD lesions in pediatric epileptic patients. We examined a single-case clinical scenario from Oregon Health Science and University, consistently identifying the Caudal Middle Frontal (cMFG) region across both EEG and MRI modalities, a finding that was confirmed in the postoperative MRI scan. This cross-validation underscores the potential of the precision of our approach in pinpointing the surgical target region. Despite being constrained by its preliminary nature, our research offers a valuable foundation for a personalized, rigorous method of detecting the location of the FCD lesions. It holds significant clinical implications for managing FCD-related epilepsy. It also portends broader applications in neurology and precision medicine. Nonetheless, further large-scale studies are needed to validate and fine-tune our methodology. Clinical Relevance - This study offers clinicians an advanced, integrated approach to preoperative assessment of FCD lesions, potentially improving the precision of surgical planning in pediatric epilepsy. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10541406
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-1050-4
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Location:
- Pittsburgh, PA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7 ) compared to pediatric control subjects (PC: n=7 ) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=−15.9899,p<<0.0001) . Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals.more » « less
- 
            Abstract Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform conventional machine learning models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests and XGBoost for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation.more » « less
- 
            Image-guided and robot-assisted surgical procedures are rapidly evolving due to their potential to improve patient management and cost effectiveness. Magnetic Resonance Imaging (MRI) is used for pre-operative planning and is also investigated for real-time intra-operative guidance. A new type of technology is emerging that uses the magnetic field gradients of the MR scanner to maneuver ferromagnetic agents for local delivery of therapeutics. With this approach, MRI is both a sensor and forms a closed-loop controlled entity that behaves as a robot (we refer to them as MRbots). The objective of this paper is to introduce a computational framework for preoperative planning using MRI and modeling of MRbot maneuvering inside tortuous blood vessels. This platform generates a virtual corridor that represents a safety zone inside the vessel that is then used to access the safety of the MRbot maneuvering. In addition, to improve safety we introduce a control that sets speed based on the local curvature of the vessel. The functionality of the framework was then tested on a realistic operational scenario of accessing a neurological lesion, a meningioma. This virtual case study demonstrated the functionality and potential of MRbots as well as revealed two primary challenges: real-time MRI (during propulsion) and the need of very strong gradients for maneuvering small MRbots inside narrow cerebral vessels. Our ongoing research focuses on further developing the computational core, MR tracking methods, and on-line interfacing to the MR scanner.more » « less
- 
            Adler, John R; Muacevic, A (Ed.)This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models. By drawing on these insights and addressing the challenges posed by small, single-institutional datasets, the paper aims to demonstrate how AI applications can improve diagnostic precision, enhance clinical decision-making, and ultimately lead to better patient outcomes in managing sellar region cystic lesions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    