skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RSim: A reference-based normalization method via rank similarity
Microbiome sequencing data normalization is crucial for eliminating technical bias and ensuring accurate downstream analysis. However, this process can be challenging due to the high frequency of zero counts in microbiome data. We propose a novel reference-based normalization method called normalization via rank similarity (RSim) that corrects sample-specific biases, even in the presence of many zero counts. Unlike other normalization methods, RSim does not require additional assumptions or treatments for the high prevalence of zero counts. This makes it robust and minimizes potential bias resulting from procedures that address zero counts, such as pseudo-counts. Our numerical experiments demonstrate that RSim reduces false discoveries, improves detection power, and reveals true biological signals in downstream tasks such as PCoA plotting, association analysis, and differential abundance analysis.  more » « less
Award ID(s):
2113458
PAR ID:
10541433
Author(s) / Creator(s):
;
Editor(s):
Li, Yue
Publisher / Repository:
Public Library of Science San Francisco, CA USA
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
9
ISSN:
1553-7358
Page Range / eLocation ID:
e1011447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution. Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying cellular process to better understand development and disease mechanisms. The unique analytic challenge is to appropriately model highly over-dispersed scRNA-seq count data with prevalent dropouts (zero counts), making zero-inflated dimensionality reduction techniques popular for scRNA-seq data analyses. Employing zero-inflated distributions, however, may place extra emphasis on zero counts, leading to potential bias when identifying the latent structure of the data. Results In this paper, we propose a fully generative hierarchical gamma-negative binomial (hGNB) model of scRNA-seq data, obviating the need for explicitly modeling zero inflation. At the same time, hGNB can naturally account for covariate effects at both the gene and cell levels to identify complex latent representations of scRNA-seq data, without the need for commonly adopted pre-processing steps such as normalization. Efficient Bayesian model inference is derived by exploiting conditional conjugacy via novel data augmentation techniques. Conclusion Experimental results on both simulated data and several real-world scRNA-seq datasets suggest that hGNB is a powerful tool for cell cluster discovery as well as cell lineage inference. 
    more » « less
  2. Summary Metagenomics sequencing is routinely applied to quantify bacterial abundances in microbiome studies, where bacterial composition is estimated based on the sequencing read counts. Due to limited sequencing depth and DNA dropouts, many rare bacterial taxa might not be captured in the final sequencing reads, which results in many zero counts. Naive composition estimation using count normalization leads to many zero proportions, which tend to result in inaccurate estimates of bacterial abundance and diversity. This paper takes a multisample approach to estimation of bacterial abundances in order to borrow information across samples and across species. Empirical results from real datasets suggest that the composition matrix over multiple samples is approximately low rank, which motivates a regularized maximum likelihood estimation with a nuclear norm penalty. An efficient optimization algorithm using the generalized accelerated proximal gradient and Euclidean projection onto simplex space is developed. Theoretical upper bounds and the minimax lower bounds of the estimation errors, measured by the Kullback–Leibler divergence and the Frobenius norm, are established. Simulation studies demonstrate that the proposed estimator outperforms the naive estimators. The method is applied to an analysis of a human gut microbiome dataset. 
    more » « less
  3. Summary In microbiome and genomic studies, the regression of compositional data has been a crucial tool for identifying microbial taxa or genes that are associated with clinical phenotypes. To account for the variation in sequencing depth, the classic log-contrast model is often used where read counts are normalized into compositions. However, zero read counts and the randomness in covariates remain critical issues. We introduce a surprisingly simple, interpretable and efficient method for the estimation of compositional data regression through the lens of a novel high-dimensional log-error-in-variable regression model. The proposed method provides corrections on sequencing data with possible overdispersion and simultaneously avoids any subjective imputation of zero read counts. We provide theoretical justifications with matching upper and lower bounds for the estimation error. The merit of the procedure is illustrated through real data analysis and simulation studies. 
    more » « less
  4. Summary Differential abundance tests for compositional data are essential and fundamental in various biomedical applications, such as single-cell, bulk RNA-seq and microbiome data analysis. However, because of the compositional constraint and the prevalence of zero counts in the data, differential abundance analysis on compositional data remains a complicated and unsolved statistical problem. This article proposes a new differential abundance test, the robust differential abundance test, to address these challenges. Compared with existing methods, the robust differential abundance test is simple and computationally efficient, is robust to prevalent zero counts in compositional datasets, can take the data’s compositional nature into account, and has a theoretical guarantee of controlling false discoveries in a general setting. Furthermore, in the presence of observed covariates, the robust differential abundance test can work with covariate-balancing techniques to remove potential confounding effects and draw reliable conclusions. The proposed test is applied to several numerical examples, and its merits are demonstrated using both simulated and real datasets. 
    more » « less
  5. Abstract Modern high-throughput sequencing technologies provide low-cost microbiome survey data across all habitats of life at unprecedented scale. At the most granular level, the primary data consist of sparse counts of amplicon sequence variants or operational taxonomic units that are associated with taxonomic and phylogenetic group information. In this contribution, we leverage the hierarchical structure of amplicon data and propose a data-driven and scalable tree-guided aggregation framework to associate microbial subcompositions with response variables of interest. The excess number of zero or low count measurements at the read level forces traditional microbiome data analysis workflows to remove rare sequencing variants or group them by a fixed taxonomic rank, such as genus or phylum, or by phylogenetic similarity. By contrast, our framework, which we call  (ee-ggregation of ompositional data), learns data-adaptive taxon aggregation levels for predictive modeling, greatly reducing the need for user-defined aggregation in preprocessing while simultaneously integrating seamlessly into the compositional data analysis framework. We illustrate the versatility of our framework in the context of large-scale regression problems in human gut, soil, and marine microbial ecosystems. We posit that the inferred aggregation levels provide highly interpretable taxon groupings that can help microbiome researchers gain insights into the structure and functioning of the underlying ecosystem of interest. 
    more » « less