Summary Metagenomics sequencing is routinely applied to quantify bacterial abundances in microbiome studies, where bacterial composition is estimated based on the sequencing read counts. Due to limited sequencing depth and DNA dropouts, many rare bacterial taxa might not be captured in the final sequencing reads, which results in many zero counts. Naive composition estimation using count normalization leads to many zero proportions, which tend to result in inaccurate estimates of bacterial abundance and diversity. This paper takes a multisample approach to estimation of bacterial abundances in order to borrow information across samples and across species. Empirical results from real datasets suggest that the composition matrix over multiple samples is approximately low rank, which motivates a regularized maximum likelihood estimation with a nuclear norm penalty. An efficient optimization algorithm using the generalized accelerated proximal gradient and Euclidean projection onto simplex space is developed. Theoretical upper bounds and the minimax lower bounds of the estimation errors, measured by the Kullback–Leibler divergence and the Frobenius norm, are established. Simulation studies demonstrate that the proposed estimator outperforms the naive estimators. The method is applied to an analysis of a human gut microbiome dataset.
more »
« less
High-dimensional log-error-in-variable regression with applications to microbial compositional data analysis
Summary In microbiome and genomic studies, the regression of compositional data has been a crucial tool for identifying microbial taxa or genes that are associated with clinical phenotypes. To account for the variation in sequencing depth, the classic log-contrast model is often used where read counts are normalized into compositions. However, zero read counts and the randomness in covariates remain critical issues. We introduce a surprisingly simple, interpretable and efficient method for the estimation of compositional data regression through the lens of a novel high-dimensional log-error-in-variable regression model. The proposed method provides corrections on sequencing data with possible overdispersion and simultaneously avoids any subjective imputation of zero read counts. We provide theoretical justifications with matching upper and lower bounds for the estimation error. The merit of the procedure is illustrated through real data analysis and simulation studies.
more »
« less
- Award ID(s):
- 1944904
- PAR ID:
- 10329216
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 109
- Issue:
- 2
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- 405 to 420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A critical task in microbiome data analysis is to explore the association between a scalar response of interest and a large number of microbial taxa that are summarized as compositional data at different taxonomic levels. Motivated by fine‐mapping of the microbiome, we propose a two‐step compositional knockoff filter to provide the effective finite‐sample false discovery rate (FDR) control in high‐dimensional linear log‐contrast regression analysis of microbiome compositional data. In the first step, we propose a new compositional screening procedure to remove insignificant microbial taxa while retaining the essential sum‐to‐zero constraint. In the second step, we extend the knockoff filter to identify the significant microbial taxa in the sparse regression model for compositional data. Thereby, a subset of the microbes is selected from the high‐dimensional microbial taxa as related to the response under a prespecified FDR threshold. We study the theoretical properties of the proposed two‐step procedure, including both sure screening and effective false discovery control. We demonstrate these properties in numerical simulation studies to compare our methods to some existing ones and show power gain of the new method while controlling the nominal FDR. The potential usefulness of the proposed method is also illustrated with application to an inflammatory bowel disease data set to identify microbial taxa that influence host gene expressions.more » « less
-
Abstract Modern high-throughput sequencing technologies provide low-cost microbiome survey data across all habitats of life at unprecedented scale. At the most granular level, the primary data consist of sparse counts of amplicon sequence variants or operational taxonomic units that are associated with taxonomic and phylogenetic group information. In this contribution, we leverage the hierarchical structure of amplicon data and propose a data-driven and scalable tree-guided aggregation framework to associate microbial subcompositions with response variables of interest. The excess number of zero or low count measurements at the read level forces traditional microbiome data analysis workflows to remove rare sequencing variants or group them by a fixed taxonomic rank, such as genus or phylum, or by phylogenetic similarity. By contrast, our framework, which we call (ee-ggregation of ompositional data), learns data-adaptive taxon aggregation levels for predictive modeling, greatly reducing the need for user-defined aggregation in preprocessing while simultaneously integrating seamlessly into the compositional data analysis framework. We illustrate the versatility of our framework in the context of large-scale regression problems in human gut, soil, and marine microbial ecosystems. We posit that the inferred aggregation levels provide highly interpretable taxon groupings that can help microbiome researchers gain insights into the structure and functioning of the underlying ecosystem of interest.more » « less
-
Abstract Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA.more » « less
-
Abstract The Dirichlet-multinomial (DM) distribution plays a fundamental role in modern statistical methodology development and application. Recently, the DM distribution and its variants have been used extensively to model multivariate count data generated by high-throughput sequencing technology in omics research due to its ability to accommodate the compositional structure of the data as well as overdispersion. A major limitation of the DM distribution is that it is unable to handle excess zeros typically found in practice which may bias inference. To fill this gap, we propose a novel Bayesian zero-inflated DM model for multivariate compositional count data with excess zeros. We then extend our approach to regression settings and embed sparsity-inducing priors to perform variable selection for high-dimensional covariate spaces. Throughout, modeling decisions are made to boost scalability without sacrificing interpretability or imposing limiting assumptions. Extensive simulations and an application to a human gut microbiome dataset are presented to compare the performance of the proposed method to existing approaches. We provide an accompanying R package with a user-friendly vignette to apply our method to other datasets.more » « less
An official website of the United States government

