skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: The source and accumulation of anthropogenic carbon in the U.S. East Coast
The ocean has absorbed anthropogenic carbon dioxide (Canthro) from the atmosphere and played an important role in mitigating global warming. However, how much Canthrois accumulated in coastal oceans and where it comes from have rarely been addressed with observational data. Here, we use a high-quality carbonate dataset (1996–2018) in the U.S. East Coast to address these questions. Our work shows that the offshore slope waters have the highest Canthroaccumulation changes (ΔCanthro) consistent with water mass age and properties. From offshore to nearshore, ΔCanthrodecreases with salinity to near zero in the subsurface, indicating no net increase in the export of Canthrofrom estuaries and wetlands. Excesses over the conservative mixing baseline also reveal an uptake of Canthrofrom the atmosphere within the shelf. Our analysis suggests that the continental shelf exports most of its absorbed Canthrofrom the atmosphere to the open ocean and acts as an essential pathway for global ocean Canthrostorage and acidification.  more » « less
Award ID(s):
2123768
PAR ID:
10541476
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
32
ISSN:
2375-2548
Subject(s) / Keyword(s):
Continental shelves export anthropogenic carbon absorbed from the atmosphere but receive nearly zero from estuaries. Continental shelves receive little anthropogenic carbon from estuaries but transport it from the atmosphere to the open ocean.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The South Atlantic Ocean is an important region for anthropogenic CO2(Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression method with six characteristic water masses to estimate Canthchange or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin‐wide ΔCanthwas 3.86 ± 0.14 Pg C decade−1. The two basins flanking the Mid‐Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanthin the top 2000 m of 0.91 ± 0.25 mol m−2 yr−1along A16S on the west and 0.57 ± 0.22 mol m−2 yr−1along A13.5 on the east. The west‐east basin ΔCanthcontrasts were most prominent in the tropical region (0–20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (Subantarctic Mode Water (SAMW)), and all latitudes in the Antarctic Intermediate Water (AAIW). Less ΔCanthin the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canthincrease rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air‐sea CO2exchange in the South Atlantic Ocean. 
    more » « less
  2. none. (Ed.)
    The concentration and isotopic composition (δC; C/N) of sedimentary organic matter (SOM) in near-shore bays and offshore shelves and basins is impacted by organic matter source (e.g., marine algae, terrestrial plants, and agricultural and sewage runoff) and natural and anthropogenic processes such as pollution, terrestrial runoff, and climate change, which can expand oxygen minimum zones, leading to decreased bottom-water dissolved oxygen (DO) and enhanced organic matter preservation. The factors that affect the sources and concentrations of SOM have not been extensively investigatedin the California margin. The objective of this study was to determine how the SOM concentrations andstable isotopes (δC; C/N) vary between shallow urban bays, offshore shelves, and deep basins and with other factors (water depth, DO and grain size). On cruises in 2018, surface sediments were collected using multicores and van-veen grabs. Samples were collected from shelves (10-14km offshore; 100-300m) and basins (90-130km offshore; 618-997m)and for comparison, urban bays in San Diego. The dissolved oxygen (DO) concentrations of seafloor-water preserved in the multicores were measured with a hand-held DO meter. In the lab, SOM concentrations were determined by Loss on Ignition (5 hours, 550°C) and grain-size distributions were determined by scanning on a CILAS 1190 particle size analyzer. Select sediments were dissolved in HCl and filtered to remove inorganic carbonates and the δC and C/N measured at UC Davis. All sediments were organic rich (2-21%) with mean grain sizes of fi ne sand or silt with variable clay (3-12%). In general, the sands were lower in organic matter (< 5%) compared to silty samples withvariable concentrations (2-22%). The greatest organic matter was found in the deeper hypoxic basins where DO was less than 1.5 mg/L. The δC & C/N were consistent with mixed terrestrial and marine organic sources and there was not a difference in mean values between the bays, shelves and basins.However, the values were highly variable for the urban bay and shelf sediments suggesting heterogenous input. Organic matter in coastal sediments are an important component of the global carbon cycle and abetter understanding of controlling factors is important in the face of climate change and increased anthropogenic impacts. 
    more » « less
  3. Abstract Global carbon dioxide (CO2) evasion from inland waters (rivers, lakes, and reservoirs) and carbon (C) export from land to oceans constitute critical terms in the global C budget. However, the magnitudes, spatiotemporal patterns, and underlying mechanisms of these fluxes are poorly constrained. Here, we used a coupled terrestrial–aquatic model to assess how multiple changes in climate, land use, atmospheric CO2concentration, nitrogen (N) deposition, N fertilizer and manure applications have affected global CO2evasion and riverine C export along the terrestrial‐aquatic continuum. We estimate that terrestrial C loadings, riverine C export, and CO2evasion in the preindustrial period (1800s) were 1,820 ± 507 (mean ± standard deviation), 765 ± 132, and 841 ± 190 Tg C yr−1, respectively. During 1800–2019, multifactorial global changes caused an increase of 25% (461 Tg C yr−1) in terrestrial C loadings, reaching 2,281 Tg C yr−1in the 2010s, with 23% (104 Tg C yr−1) of this increase exported to the ocean and 59% (273 Tg C yr−1) being emitted to the atmosphere. Our results showed that global inland water recycles and exports nearly half of the net land C sink into the atmosphere and oceans, highlighting the important role of inland waters in the global C balance, an amount that should be taken into account in future C budgets. Our analysis supports the view that a major feature of the global C cycle–the transfer from land to ocean–has undergone a dramatic change over the last two centuries as a result of human activities. 
    more » « less
  4. Abstract The Southern Ocean regulates atmospheric CO2and Earth's climate as a critical region for air‐sea gas exchange, delicately poised between being a CO2source and sink. Here, we estimate how long a water mass has remained isolated from the atmosphere and utilize14C/12C ratios (Δ14C) to trace the pathway and escape route of carbon sequestered in the deep ocean through the mixed layer to the atmosphere. The position of our core at the northern margin of the Southern Indian Ocean, tracks latitudinal shifts of the Southern Ocean frontal zones across the deglaciation. Our results suggest an expanded glacial Antarctic region trapped CO2, whereas deglacial expansion of the subantarctic permitted ventilation of the trapped CO2, contributing to a rapid atmospheric CO2rise. We identify frontal positions as a key factor balancing CO2outgassing versus sequestration in a region currently responsible for nearly half of global ocean CO2uptake. 
    more » « less
  5. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less