ABSTRACT The high-redshift galaxy UV luminosity function (UVLF) has become essential for understanding the formation and evolution of the first galaxies. Yet, UVLFs only measure galaxy abundances, giving rise to a degeneracy between the mean galaxy luminosity and its stochasticity. Here, we show that upcoming clustering measurements with the JWST, as well as with Roman, will be able to break this degeneracy, even at redshifts z ≳ 10. First, we demonstrate that current Subaru Hyper Suprime-Cam (HSC) measurements of the galaxy bias at z ∼ 4–6 point to a relatively tight halo-galaxy connection, with low stochasticity. Then, we show that the larger UVLFs observed by JWST at z ≳ 10 can be explained with either a boosted average UV emission or an enhanced stochasticity. These two models, however, predict different galaxy biases, which are potentially distinguishable in JWST and Roman surveys. Galaxy-clustering measurements, therefore, will provide crucial insights into the connection between the first galaxies and their dark-matter haloes, and identify the root cause of the enhanced abundance of z ≳ 10 galaxies revealed with JWST during its first year of operations. 
                        more » 
                        « less   
                    
                            
                            Galaxy bias in the era of LSST: perturbative bias expansions
                        
                    
    
            Upcoming imaging surveys will allow for high signal-to-noise measurements of galaxy clustering at small scales. In this work, we present the results of the Rubin Observatory Legacy Survey of Space and Time (LSST) bias challenge, the goal of which is to compare the performance of different nonlinear galaxy bias models in the context of LSST Year 10 (Y10) data. Specifically, we compare two perturbative approaches, Lagrangian perturbation theory (LPT) and Eulerian perturbation theory (EPT) to two variants of Hybrid Effective Field Theory (HEFT), with our fiducial implementation of these models including terms up to second order in the bias expansion as well as nonlocal bias and deviations from Poissonian stochasticity. We consider a variety of different simulated galaxy samples and test the performance of the bias models in a tomographic joint analysis of LSST-Y10-like galaxy clustering, galaxy-galaxy-lensing and cosmic shear. We find both HEFT methods as well as LPT and EPT combined with non-perturbative predictions for the matter power spectrum to yield unbiased constraints on cosmological parameters up to at least a maximal scale ofkmax = 0.4 Mpc-1for all samples considered, even in the presence of assembly bias. While we find that we can reduce the complexity of the bias model for HEFT without compromising fit accuracy, this is not generally the case for the perturbative models. We find significant detections of non-Poissonian stochasticity in all cases considered, and our analysis shows evidence that small-scale galaxy clustering predominantly improves constraints on galaxy bias rather than cosmological parameters. These results therefore suggest that the systematic uncertainties associated with current nonlinear bias models are likely to be subdominant compared to other sources of error for tomographic analyses of upcoming photometric surveys, which bodes well for future galaxy clustering analyses using these high signal-to-noise data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2206563
- PAR ID:
- 10541494
- Publisher / Repository:
- Journal of Cosmology and Astroparticle Physics
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2024
- Issue:
- 02
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We implement a model for the two-point statistics of biased tracers that combines dark matter dynamics from N-body simulations with an analytic Lagrangian bias expansion. Using Aemulus, a suite of N-body simulations built for emulation of cosmological observables, we emulate the cosmology dependence of these non-linear spectra from redshifts z = 0 to z = 2. We quantify the accuracy of our emulation procedure, which is sub-per cent at $$k=1\, h \,{\rm Mpc}^{-1}$$ for the redshifts probed by upcoming surveys and improves at higher redshifts. We demonstrate its ability to describe the statistics of complex tracer samples, including those with assembly bias and baryonic effects, reliably fitting the clustering and lensing statistics of such samples at redshift z ≃ 0.4 to scales of $$k_{\rm max} \approx 0.6\, h\,\mathrm{Mpc}^{-1}$$. We show that the emulator can be used for unbiased cosmological parameter inference in simulated joint clustering and galaxy–galaxy lensing analyses with data drawn from an independent N-body simulation. These results indicate that our emulator is a promising tool that can be readily applied to the analysis of current and upcoming data sets from galaxy surveys.more » « less
- 
            ABSTRACT Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 $$h^{-1}\, \rm Mpc$$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models.more » « less
- 
            ABSTRACT The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ωm and the Hubble parameter h, $$\Omega _m h = 0.195^{+0.023}_{-0.018}$$, and 2–3 per cent measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bσ8. A companion paper (in preparation) will present the cross-correlations of these high-z samples with cosmic microwave background lensing from Planck and South Pole Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.more » « less
- 
            Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of large-scale structure over 0.4 ≤ z ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg -2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxy-convergence cross-spectra using models based on cosmological perturbation theory, restricting to large scales that are expected to be well described by such models. Within the context of ΛCDM, combining all 4 samples and using priors on the background cosmology from supernova and baryon acoustic oscillation measurements, we find S 8 = σ 8 (Ω m /0.3) 0.5 = 0.73 ± 0.03. This result is lower than the prediction of the ΛCDM model conditioned on the Planck data. Our data prefer a slower growth of structure at low redshift than the model predictions, though at only modest significance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    