skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the maximal spectral type of nilsystems
Let ( G / Γ<#comment/> , R a ) (G/\Gamma ,R_a) be an ergodic k k -step nilsystem for k ≥<#comment/> 2 k\geq 2 . We adapt an argument of Parry [Topology 9 (1970), pp. 217–224] to show that L 2 ( G / Γ<#comment/> ) L^2(G/\Gamma ) decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host–Kra–Maass [J. Anal. Math.124(2014), pp. 261–295] for 2 2 -step nilsystems and a result by Stepin [Uspehi Mat. Nauk24(1969), pp. 241–242] for nilsystems G / Γ<#comment/> G/\Gamma with connected, simply connected G G more » « less
Award ID(s):
1926686
PAR ID:
10541500
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Proceedings of the American Mathematical Society, Series B
Volume:
11
Issue:
41
ISSN:
2330-1511
Format(s):
Medium: X Size: p. 469-480
Size(s):
p. 469-480
Sponsoring Org:
National Science Foundation
More Like this
  1. Let Γ<#comment/> \Gamma be a countable abelian group. An (abstract) Γ<#comment/> \Gamma -system X \mathrm {X} - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of Γ<#comment/> \Gamma - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor Z 2 ( X ) \mathrm {Z}^2(\mathrm {X}) . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian Γ<#comment/> \Gamma , namely that they are the inverse limit of translational systems G n / Λ<#comment/> n G_n/\Lambda _n arising from locally compact nilpotent groups G n G_n of nilpotency class 2 2 , quotiented by a lattice Λ<#comment/> n \Lambda _n . Results of this type were previously known when Γ<#comment/> \Gamma was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers U 3 ( G ) U^3(G) norm for arbitrary finite abelian groups G G
    more » « less
  2. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less
  3. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  4. We show that every Borel graph G G of subexponential growth has a Borel proper edge-coloring with Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors. We deduce this from a stronger result, namely that an n n -vertex (finite) graph G G of subexponential growth can be properly edge-colored using Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors by an O ( log ∗<#comment/> ⁡<#comment/> n ) O(\log ^\ast n) -round deterministic distributed algorithm in theLOCALmodel, where the implied constants in the O ( ⋅<#comment/> ) O(\cdot ) notation are determined by a bound on the growth rate of G G
    more » « less
  5. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less