The dynamics of molecular excitonic systems are complicated by a competition between electronic coupling (which drives delocalization) and vibrational-electronic (vibronic) interactions (which tend to encourage electronic localization). A particular challenge of molecular systems is that they typically possess a large number of independent vibrations, with frequencies often spanning the entire spectrum of relevant electronic energy gaps. Recent spectroscopic observations and numerical simulations on a water-soluble chlorophyll-binding protein (WSCP) reveal a transition between two regimes of vibronic behavior, a Redfield-like regime in which low-frequency vibrations respond to a delocalized excitonic state, and a Förster-like regime where high-frequency vibrations act as incoherent excitations on individual pigments. Although numerical simulations can reproduce these effects, there is a need for a simple, systematic theory that accurately describes the smooth transition between these two regimes in experimental spectra. Here we address this challenge by generalizing the variational polaron transform approach of [Bloemsma et al., Chem. Phys. 481, 250 (2016)] to include arbitrary bath densities for systems with or without symmetry. We benchmark this theory against both numerical matrix-diagonalization methods and experimental 77 K fluorescence spectra for two WSCP variants, obtaining quite satisfactory agreement in both cases. We apply this theory to offer an explanation for the large loss in apparent electronic coupling in the WSCP Q57K mutant and to examine the likely impact of the interplay between excitonic delocalization and vibrational localization on vibrational sideband shapes and apparent coupling strengths in high-resolution optical spectra for chlorophyll-protein complexes such as WSCP.
more »
« less
Super-resolution techniques to simulate electronic spectra of large molecular systems
Abstract An accurate treatment of electronic spectra in large systems with a technique such as time-dependent density functional theory is computationally challenging. Due to the Nyquist sampling theorem, direct real-time simulations must be prohibitively long to achieve suitably sharp resolution in frequency space. Super-resolution techniques such as compressed sensing and MUSIC assume only a small number of excitations contribute to the spectrum, which fails in large molecular systems where the number of excitations is typically very large. We present an approach that combines exact short-time dynamics with approximate frequency space methods to capture large narrow features embedded in a dense manifold of smaller nearby peaks. We show that our approach can accurately capture narrow features and a broad quasi-continuum of states simultaneously, even when the features overlap in frequency. Our approach is able to reduce the required simulation time to achieve reasonable accuracy by a factor of 20-40 with respect to standard Fourier analysis and shows promise for accurately predicting the whole spectrum of large molecules and materials.
more »
« less
- Award ID(s):
- 2154938
- PAR ID:
- 10541503
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use cyclic spectroscopy to perform high-frequency resolution analyses of multihour baseband Arecibo observations of the millisecond pulsar PSR B1937+21. This technique allows for the examination of scintillation features in far greater detail than is otherwise possible under most pulsar timing array observing setups. We measure scintillation bandwidths and timescales in each of eight subbands across a 200 MHz observing band in each observation. Through these measurements we obtain intra-epoch estimates of the frequency scalings for scintillation bandwidth and timescale. Thanks to our high-frequency resolution and the narrow scintles of this pulsar, we resolve scintillation arcs in the secondary spectra due to the increased Nyquist limit, which would not have been resolved at the same observing frequency with a traditional filterbank spectrum using NANOGrav’s current time and frequency resolutions, and the frequency-dependent evolution of scintillation arc features within individual observations. We observe the dimming of prominent arc features at higher frequencies, possibly due to a combination of decreasing flux density and the frequency dependence of the plasma refractive index of the interstellar medium. We also find agreement with arc curvature frequency dependence predicted by Stinebring et al. in some epochs. Thanks to the frequency-resolution improvement provided by cyclic spectroscopy, these results show strong promise for future such analyses with millisecond pulsars, particularly for pulsar timing arrays, where such techniques can allow for detailed studies of the interstellar medium in highly scattered pulsars without sacrificing the timing resolution that is crucial to their gravitational-wave detection efforts.more » « less
-
In this paper, we propose a procedure to analyze lensless single random phase encoding (SRPE) systems to assess their robustness to variations in image sensor pixel size as the input signal frequency is varied. We use wave propagation to estimate the maximum pixel size to capture lensless SRPE intensity patterns such that an input signal frequency can be captured accurately. Lensless SRPE systems are contrived by placing a diffuser in front of an image sensor such that the optical field coming from an object can be modulated before its intensity signature is captured at the image sensor. Since diffuser surfaces contain very fine features, the captured intensity patterns always contain high spatial frequencies regardless of the input frequencies. Hence, a conventional Nyquist-criterion-based treatment of this problem would not give us a meaningful characterization. We propose a theoretical estimate on the upper limit of the image sensor pixel size such that the variations in the input signal are adequately captured in the sensor pixels. A numerical simulation of lensless SRPE systems using angular spectrum propagation and mutual information verifies our theoretical analysis. The simulation estimate of the sampling criterion matches very closely with our proposed theoretical estimate. We provide a closed-form estimate for the maximum sensor pixel size as a function of input frequency and system parameters such that an input signal frequency can be captured accurately, making it possible to optimize general-purpose SRPE systems. Our results show that lensless SRPE systems have a much greater robustness to sensor pixel size compared with lens based systems, which makes SRPE useful for exotic imagers when pixel size is large. To the best of our knowledge, this is the first report to investigate sampling of lensless SRPE systems as a function of input image frequency and physical parameters of the system to estimate the maximum image sensor pixel size.more » « less
-
Spectroscopic techniques based on core-level excitations offer powerful tools for probing molecular and electronic structures with high spatial resolution. However, accurately calculating spectral features at the L or M edges is challenging due to the significant influence of spin–orbit and multiplet effects. While scalar-relativistic effects can be incorporated with minimal computational cost, accounting for spin–orbit interactions requires complex frameworks that can be computationally expensive. In this work, we develop a reduced-cost state-interaction approach for simulating near-edge soft x-ray absorption spectra of closed-shell transition metal complexes with relativistic effects incorporated using the ZORA-Kohn–Sham Hamiltonian. The computed spectra closely agree with those obtained with state-of-the-art approaches. This methodology provides a practical and cost-effective alternative to more rigorous two-component methods, making it particularly valuable for large-scale calculations and applications such as resonant inelastic x-ray scattering simulations, where capturing a large number of excited states is essential.more » « less
-
Abstract The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.more » « less
An official website of the United States government
