skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Hop Away from Everywhere: A View of the Intercontinental Long-haul Infrastructure
We present a longitudinal study of intercontinental long-haul links (LHLs) - links with latencies significantly higher than that of all other links in a traceroute path. Our study is motivated by the recognition of these LHLs as a network-layer manifestation of critical transoceanic undersea cables. We present a methodology and associated processing system for identifying long-haul links in traceroute measurements. We apply this system to a large corpus of traceroute data and report on multiple aspects of long haul connectivity including country-level prevalence, routers as international gateways, preferred long-haul destinations, and the evolution of these characteristics over a 7 year period. We identify 85,620 layer-3 links (out of 2.7M links in a large traceroute dataset) that satisfy our definition for intercontinental long haul with many of them terminating in a relatively small number of nodes. An analysis of connected components shows a clearly dominant component with a relative size that remains stable despite a significant growth of the long-haul infrastructure.  more » « less
Award ID(s):
2106517
PAR ID:
10541535
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
7
Issue:
3
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 26
Subject(s) / Keyword(s):
Long-Haul Links (LHL), intercontinental links, submarine cables
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a longitudinal study of intercontinental long-haul links (LHL) - links with latencies significantly higher than that of all other links in a traceroute path. Our study is motivated by the recognition of these LHLs as a network-layer manifestation of transoceanic undersea cables. We present a methodology and associated processing system for identifying long-haul links in traceroute measurements, and report on our findings from. We apply this system to a large corpus of traceroute data and report on multiple aspects of long haul connectivity including country-level prevalence, routers as international gateways, preferred long-haul destinations, and the evolution of these characteristics over a 7 year period. 
    more » « less
  2. We present a longitudinal study of intercontinental long-haul links (LHL) - links with latencies significantly higher than that of all other links in a traceroute path. Our study is motivated by the recognition of these LHLs as a network-layer manifestation of transoceanic undersea cables. We present a methodology and associated processing system for identifying long-haul links in traceroute measurements, and report on our findings from. We apply this system to a large corpus of traceroute data and report on multiple aspects of long haul connectivity including country-level prevalence, routers as international gateways, preferred long-haul destinations, and the evolution of these characteristics over a 7 year period. 
    more » « less
  3. With the demonstration of quantum-limited optical time transfer capable of tolerating the losses associated with long ground-to-space links, two future applications of free-space time transfer have emerged: intercontinental clock comparisons for time dissemination and coherence transfer for future distributed sensing in the mm-wave region. In this paper, we estimated the projected performance of these two applications using quantum-limited optical time transfer and assuming existing low-size, low-weight, and low-power hardware. In both cases, we limit the discussion to the simplest case of a single geosynchronous satellite linked to either one or two ground stations. One important consideration for such future space-based operations is the choice of reference oscillator onboard the satellite. We find that with a modestly performing optical reference oscillator and low-power fiber-based frequency combs, quantum-limited time transfer could support intercontinental clock comparisons through a common-view node in geostationary orbit with a modified Allan deviation at the 10−16 level at 10-s averaging time, limited primarily by residual turbulence piston noise. In the second application of coherence transfer from ground-to-geosynchronous orbit, we find the system should support high short-term coherence with ∼10 millirad phase noise on a 300 GHz carrier at essentially unlimited integration times. 
    more » « less
  4. As hyperscalers such as Google, Microsoft, and Amazon play an increasingly important role in today's Internet, they are also capable of manipulating probe packets that traverse their privately owned and operated backbones. As a result, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in these global-scale cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating connectivity in these private backbone networks. Our approach relies on using only lightweight (i.e., simple, easily interpretable, and readily available) measurements, but requires applying heavyweight mathematical techniques for analyzing these measurements. In particular, we describe a new method that uses network latency measurements and relies on concepts from Riemannian geometry (i.e., Ricci curvature) to assess the characteristics of the connectivity fabric of a given network infrastructure. We complement this method with a visualization tool that generates a novel manifold view of a network's delay space. We demonstrate our approach by utilizing latency measurements from available vantage points and virtual machines running in datacenters of three large cloud providers to study different aspects of connectivity in their private backbones and show how our generated manifold views enable us to expose and visualize critical aspects of this connectivity. 
    more » « less
  5. null (Ed.)
    We propose a new traceroute tool, FlashRoute for efficient large-scale topology discovery. FlashRoute reduces the time required for tracerouting the entire /24 IPv4 address space by a factor of three and half compared to previous state of the art. Additionally, we present a new technique to measure hop-distance to a destination using a single probe and uncover a bias of the influential ISI Census hitlist [18] in topology discovery. 
    more » « less