skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Manifold View of Connectivity in the Private Backbone Networks of Hyperscalers
As hyperscalers such as Google, Microsoft, and Amazon play an increasingly important role in today's Internet, they are also capable of manipulating probe packets that traverse their privately owned and operated backbones. As a result, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in these global-scale cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating connectivity in these private backbone networks. Our approach relies on using only lightweight (i.e., simple, easily interpretable, and readily available) measurements, but requires applying heavyweight mathematical techniques for analyzing these measurements. In particular, we describe a new method that uses network latency measurements and relies on concepts from Riemannian geometry (i.e., Ricci curvature) to assess the characteristics of the connectivity fabric of a given network infrastructure. We complement this method with a visualization tool that generates a novel manifold view of a network's delay space. We demonstrate our approach by utilizing latency measurements from available vantage points and virtual machines running in datacenters of three large cloud providers to study different aspects of connectivity in their private backbones and show how our generated manifold views enable us to expose and visualize critical aspects of this connectivity.  more » « less
Award ID(s):
2039146
PAR ID:
10496493
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Computer Machinery
Date Published:
Journal Name:
Communications of the ACM
Volume:
66
Issue:
8
ISSN:
0001-0782
Page Range / eLocation ID:
95 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The main premise of this work is that since large cloud providers can and do manipulate probe packets that traverse their privately owned and operated backbones, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in large cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating private connectivity in today's Internet. Our approach relies on using only "light-weight" ( i.e., simple, easily-interpretable, and readily available) measurements, but requires applying a "heavy-weight" or advanced mathematical analysis. In particular, we describe a new method for assessing the characteristics of network path connectivity that is based on concepts from Riemannian geometry ( i.e., Ricci curvature) and also relies on an array of carefully crafted visualizations ( e.g., a novel manifold view of a network's delay space). We demonstrate our method by utilizing latency measurements from RIPE Atlas anchors and virtual machines running in data centers of three large cloud providers to (i) study different aspects of connectivity in their private backbones and (ii) show how our manifold-based view enables us to expose and visualize critical aspects of this connectivity over different geographic scales. 
    more » « less
  2. Edge computing is an emerging paradigm whose goal is to boost with cloud resources available at the edge the computational capability of otherwise weak devices. This paradigm is mostly attractive to reduce user perceived latency. A central mechanism in edge computing is cyber-foraging, i.e., the search and delegation to capable edge cloud processes of tasks too complex, time consuming or resource intensive to be running on user devices or low-latency demanding to be running remotely, as a form of edge function. An edge function is any network or device-specific process that may be run on an edge process instead. Despite the recent interest for this technology from industry and academia, cyber-foraging techniques and protocols have yet to be standardized. In this paper, we leverage decomposition theory to propose an architecture providing insights in the design and implementation of protocols for cyber-foraging of multiple edge functions. In contrast with several existing solutions, we argue that the (distributed) cyber-foraging orchestration should be policy-based and not an ad-hoc solution, i.e., either a pure edge cloud burden or a device decision. To this end, via simulations, we show how our approach can be used by edge computing providers and application programmers to compare and evaluate different alternative cyber-foraging solutions. Our decomposition-based approach has general applicability to other network utility maximization problems, even outside the edge computing domain. 
    more » « less
  3. The growing demand of industrial, automotive and service robots presents a challenge to the centralized Cloud Robotics model in terms of privacy, security, latency, bandwidth, and reliability. In this paper, we present a ‘Fog Robotics’ approach to deep robot learning that distributes compute, storage and networking resources between the Cloud and the Edge in a federated manner. Deep models are trained on non-private (public) synthetic images in the Cloud; the models are adapted to the private real images of the environment at the Edge within a trusted network and subsequently, deployed as a service for low-latency and secure inference/prediction for other robots in the network. We apply this approach to surface decluttering, where a mobile robot picks and sorts objects from a cluttered floor by learning a deep object recognition and a grasp planning model. Experiments suggest that Fog Robotics can improve performance by sim-to-real domain adaptation in comparison to exclusively using Cloud or Edge resources, while reducing the inference cycle time by 4 to successfully declutter 86% of objects over 213 attempts. 
    more » « less
  4. Cherifi, Hocine; Donduran, Murat; Rocha, Luis; Cherifi, Chantal; Varol, Onur (Ed.)
    This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as “learning backbones.” Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework’s utility. 
    more » « less
  5. This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as ``learning backbones.'' Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework's utility. 
    more » « less