Aims.We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration. Methods.Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner= [0.9740 ± 0.0083, (2.46 ± 1.07) × 10−5], (s, q)intermediate= [0.9779 ± 0.0017, (1.56 ± 0.25) × 10−5], and (s, q)outer= [0.9894 ± 0.0107, (2.31 ± 1.29) × 10−5], wheresandqdenote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage. Results.Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2–6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48–0.51)M⊙, and that of the planet’s mass spans a range of (2.6–4.0)ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.
more »
« less
KMT-2023-BLG-0416, KMT-2023-BLG-1454, KMT-2023-BLG-1642: Microlensing planets identified from partially covered signals
Aims. We investigate the 2023 season data from high-cadence microlensing surveys with the aim of detecting partially covered shortterm signals and revealing their underlying astrophysical origins. Through this analysis, we ascertain that the signals observed in the lensing events KMT-2023-BLG-0416, KMT-2023-BLG-1454, and KMT-2023-BLG-1642 are of planetary origin. Methods. Considering the potential degeneracy caused by the partial coverage of signals, we thoroughly investigate the lensing-parameter plane. In the case of KMT-2023-BLG-0416, we have identified two solution sets, one with a planet-to-host mass ratio ofq~ 10−2and the other withq~ 6 × 10−5, within each of which there are two local solutions emerging due to the inner-outer degeneracy. For KMT-2023-BLG-1454, we discern four local solutions featuring mass ratios ofq~ (1.7−4.3) × 10−3. When it comes to KMT-2023-BLG-1642, we identified two locals withq~ (6 − 10) × 10−3resulting from the inner-outer degeneracy. Results. We estimate the physical lens parameters by conducting Bayesian analyses based on the event time scale and Einstein radius. For KMT-2023-BLG-0416L, the host mass is ~0.6M⊙, and the planet mass is ~(6.1−6.7)MJaccording to one set of solutions and ~0.04MJaccording to the other set of solutions. KMT-2023-BLG-1454Lb has a mass roughly half that of Jupiter, while KMT-2023-BLG-1646Lb has a mass in the range of between 1.1 to 1.3 times that of Jupiter, classifying them both as giant planets orbiting mid M-dwarf host stars with masses ranging from 0.13 to 0.17 solar masses.
more »
« less
- Award ID(s):
- 2108414
- PAR ID:
- 10541562
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 683
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A187
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims.We analyze the anomalies appearing in the light curves of the three microlensing events MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735. The anomalies exhibit common short-term dip features that appear near the peak. Methods.From the detailed analyses of the light curves, we find that the anomalies were produced by planets accompanied by the lenses of the events. For all three events, the estimated mass ratios between the planet and host are on the order of 10−4:q ~8 × 10−4for MOA-2022-BLG-563L,q~ 2.5 × 10−4for KMT-2023-BLG-0469L, andq~ 1.9 × 10−4for KMT-2023-BLG-0735L. The interpretations of the anomalies are subject to a common inner-outer degeneracy, which causes ambiguity when estimating the projected planet-host separation. Results.We estimated the planet mass,Mp, host mass,Mh, and distance,DL, to the planetary system by conducting Bayesian analyses using the observables of the events. The estimated physical parameters of the planetary systems are (Mh/M⊙,Mp/MJ,DL/kpc) = (0.48−0.30+0.36, 0.40−0.25+0.31, 6.53−1.57+1.12) for MOA-2022-BLG-563L, (0.47−0.26+0.35, 0.124−0.067+0.092, 7.07−1.19+1.03) for KMT-2023-BLG-0469L, and (0.62−0.35+0.34, 0.125−0.070+0.068, 6.26−1.67+1.27) for KMT-2023-BLG-0735L. According to the estimated parameters, all planets are cold planets with projected separations that are greater than the snow lines of the planetary systems, they have masses that lie between the masses of Uranus and Jupiter of the Solar System, and the hosts of the planets are main-sequence stars that are less massive than the Sun. In all cases, the planetary systems are more likely to be in the bulge with probabilitiesPbulge= 64%, 73%, and 56% for MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735, respectively.more » « less
-
Aims.We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2021 and 2022 seasons to identify planetary lensing events displaying a consistent anomalous pattern. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. Methods.To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the “inner–outer” degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen–Cannae degeneracy, the former solutions have substantially higher mass ratio. Results.Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass ~0.2M⊙in terms of a median posterior value, while the planet’s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately 0.51MJand a host star with a mass of about 0.37M⊙. In both cases, the lenses are most likely situated in the bulge.more » « less
-
KMT-2021-BLG-1150Lb: Microlensing planet detected through a densely covered planetary-caustic signalAims.Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, the light curve of which exhibits a densely and continuously covered short-term anomaly. Methods.In order to identify degenerate solutions, we thoroughly investigated the parameter space by conducting dense grid searches for the lensing parameters. We then checked the severity of the degeneracy among the identified solutions. Results.We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s,q)in~ (1.297, 1.10 × 10−3) for the inner solution and (s,q)out~ (1.242, 1.15 × 10−3) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a massMp= 0.88−0.36+0.38Mjand its host with a massMh= 0.73−0.30+0.32M⊙lying toward the Galactic center at a distanceDL= 3.8−1.2+1.3kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, we find that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated.more » « less
-
Aims.We investigate the microlensing data collected in the 2022 season from high-cadence microlensing surveys in order to find weak signals produced by planetary companions to lenses. Methods.From these searches, we find that two lensing events, KMT-2022-BLG-0475 and KMT-2022-BLG-1480, exhibit weak short-term anomalies. From a detailed modeling of the lensing light curves, we determine that the anomalies are produced by planetary companions with a mass ratio to the primary ofq ~1.8 × 10−4for KMT-2022-BLG-0475L andq ~4.3 × 10−4for KMT-2022-BLG-1480L. Results.We estimate that the host and planet masses and the projected planet-host separation are (Mh/M⊙,Mp/MU,a⊥/au) = (0.43−0.23+0.35, 1.73−0.92+1.42, 2.03−0.38+0.25) for KMT-2022-BLG-0475L and (0.18−0.09+0.16, 1.82−0.92+1.60, 1.22−0.14+0.15) for KMT-2022-BLG-1480L, whereMUdenotes the mass of Uranus. The two planetary systems have some characteristics in common: the primaries of the lenses are early-mid M dwarfs that lie in the Galactic bulge, and the companions are ice giants that lie beyond the snow lines of the planetary systems.more » « less