Aims. The light curves of the microlensing events MOA-2022-BLG-091 and KMT-2024-BLG-1209 exhibit anomalies with very similar features. These anomalies appear near the peaks of the light curves, where the magnifications are moderately high, and are distinguished by weak caustic-crossing features with minimal distortion while the source remains inside the caustic. To achieve a deeper understanding of these anomalies, we conducted a comprehensive analysis of the lensing events. Methods. We carried out binary-lens modeling with a thorough exploration of the parameter space. This analysis revealed that the anomalies in both events are of planetary origin, although their exact interpretation is complicated by different types of degeneracy. In the case of MOA-2022-BLG-091, the main difficulty in the interpretation of the anomaly arises from a newly identified degeneracy related to the uncertain angle at which the source trajectory intersects the planet–host axis. For KMT-2024-BLG-1209, the interpretation is affected by the previously known inner-outer degeneracy, which leads to ambiguity between solutions in which the source passes through either the inner or outer caustic region relative to the planet host. Results. Bayesian analysis indicates that the planets in both lens systems are giant planets with masses about two to four times that of Jupiter, orbiting early K-type main-sequence stars. Both systems are likely located in the Galactic disk at a distance of around 4 kiloparsecs. The degeneracy in KMT-2024-BLG-1209 is challenging to resolve because it stems from intrinsic similarities in the caustic structures of the degenerate solutions. In contrast, the degeneracy in MOA-2022-BLG-091, which occurs by chance rather than from inherent characteristics, is expected to be resolved by the future space based Roman RGES microlensing survey.
more »
« less
A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves
Abstract The gravitational microlensing method of discovering exoplanets and multi-star systems can produce degenerate solutions, some of which require in-depth analysis to uncover. We propose a new parameter space that can be used to sample potential solutions more efficiently and is more robust at finding all degenerate solutions for the “central-resonant” caustic degeneracy. We identified two new parameters,kandh, that can be sampled in place of the mass ratios and separations of the systems under analysis to identify degenerate solutions. The parameterkis related to the size of the central caustic, Δξc, whilehis related to the distance of a point along thekcontour from log(s) = 0, wheresis the projected planet-host separation. In this work, we present the characteristics of these parameters and the tests we conducted to prove their efficacy.
more »
« less
- Award ID(s):
- 2108414
- PAR ID:
- 10541618
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 136
- Issue:
- 9
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 094401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
KMT-2021-BLG-1150Lb: Microlensing planet detected through a densely covered planetary-caustic signalAims.Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, the light curve of which exhibits a densely and continuously covered short-term anomaly. Methods.In order to identify degenerate solutions, we thoroughly investigated the parameter space by conducting dense grid searches for the lensing parameters. We then checked the severity of the degeneracy among the identified solutions. Results.We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s,q)in~ (1.297, 1.10 × 10−3) for the inner solution and (s,q)out~ (1.242, 1.15 × 10−3) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a massMp= 0.88−0.36+0.38Mjand its host with a massMh= 0.73−0.30+0.32M⊙lying toward the Galactic center at a distanceDL= 3.8−1.2+1.3kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, we find that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated.more » « less
-
Abstract The Macquart relation describes the correlation between the dispersion measure (DM) of fast radio bursts (FRBs) and the redshiftzof their host galaxies. The scatter of the Macquart relation is sensitive to the distribution of baryons in the intergalactic medium including those ejected from galactic halos through feedback processes. The variance of the distribution in DMs from the cosmic web (DMcosmic) is parameterized by a fluctuation parameterF. In this work, we present a new measurement ofFusing 78 FRBs of which 21 have been localized to host galaxies. Our analysis simultaneously fits for the Hubble constantH0and the DM distribution due to the FRB host galaxy. We find that the fluctuation parameter is degenerate with these parameters, most notablyH0, and use a uniform prior onH0to measure at the 3σconfidence interval and a new constraint on the Hubble constant . Using a synthetic sample of 100 localized FRBs, the constraint on the fluctuation parameter is improved by a factor of ∼2. Comparing ourFmeasurement to simulated predictions from cosmological simulation (IllustrisTNG), we find agreement between redshifts 0.4 <z andz< 2.0. However, atz< 0.4, the simulations underpredictF, which we attribute to the rapidly changing extragalactic DM excess distribution at low redshift.more » « less
-
Abstract There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration.more » « less
-
Abstract The offset microlensing degeneracy, recently proposed by Zhang et al., has been shown to generalize the close–wide and inner–outercausticdegeneracies into a unified regime ofmagnificationdegeneracy in the interpretation of two-body planetary microlensing observations. While the inner–outer degeneracy expects the source trajectory to pass equidistant to the planetary caustics of the degenerate lens configurations, the offset degeneracy states that the same mathematical expression applies to any combination of the close, wide, and resonant caustic topologies, where the projected star–planet separations differ by an offset (sA≠sB) that depends on where the source trajectory crosses the lens axis. An important implication is that thesA= 1/sBsolution of the close–wide degeneracy never strictly manifests in observations except when the source crosses a singular point near the primary. Nevertheless, the offset degeneracy was proposed upon numerical calculations, and no theoretical justification was given. Here, we provide a theoretical treatment of the offset degeneracy, which demonstrates its nature as a mathematical degeneracy. From first principles, we show that the offset degeneracy formalism is exact to zeroth order in the mass ratio (q) for two cases: when the source crosses the lens axis inside of caustics, and for when crossing outside of caustics. The extent to which the offset degeneracy persists in oblique source trajectories is explored numerically. Finally, it is shown that the superposition principle allows for a straightforward generalization toN-body microlenses withN− 1 planetary lens components (q≪ 1), which results in a 2N−1-fold degeneracy.more » « less
An official website of the United States government

