skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves
Abstract The gravitational microlensing method of discovering exoplanets and multi-star systems can produce degenerate solutions, some of which require in-depth analysis to uncover. We propose a new parameter space that can be used to sample potential solutions more efficiently and is more robust at finding all degenerate solutions for the “central-resonant” caustic degeneracy. We identified two new parameters,kandh, that can be sampled in place of the mass ratios and separations of the systems under analysis to identify degenerate solutions. The parameterkis related to the size of the central caustic, Δξc, whilehis related to the distance of a point along thekcontour from log(s) = 0, wheresis the projected planet-host separation. In this work, we present the characteristics of these parameters and the tests we conducted to prove their efficacy.  more » « less
Award ID(s):
2108414
PAR ID:
10541618
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
136
Issue:
9
ISSN:
0004-6280
Page Range / eLocation ID:
094401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims.Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, the light curve of which exhibits a densely and continuously covered short-term anomaly. Methods.In order to identify degenerate solutions, we thoroughly investigated the parameter space by conducting dense grid searches for the lensing parameters. We then checked the severity of the degeneracy among the identified solutions. Results.We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s,q)in~ (1.297, 1.10 × 10−3) for the inner solution and (s,q)out~ (1.242, 1.15 × 10−3) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a massMp= 0.88−0.36+0.38Mjand its host with a massMh= 0.73−0.30+0.32Mlying toward the Galactic center at a distanceDL= 3.8−1.2+1.3kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, we find that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated. 
    more » « less
  2. Abstract The Macquart relation describes the correlation between the dispersion measure (DM) of fast radio bursts (FRBs) and the redshiftzof their host galaxies. The scatter of the Macquart relation is sensitive to the distribution of baryons in the intergalactic medium including those ejected from galactic halos through feedback processes. The variance of the distribution in DMs from the cosmic web (DMcosmic) is parameterized by a fluctuation parameterF. In this work, we present a new measurement ofFusing 78 FRBs of which 21 have been localized to host galaxies. Our analysis simultaneously fits for the Hubble constantH0and the DM distribution due to the FRB host galaxy. We find that the fluctuation parameter is degenerate with these parameters, most notablyH0, and use a uniform prior onH0to measure log 10 F > 0.86 at the 3σconfidence interval and a new constraint on the Hubble constant H 0 = 85.3 8.1 + 9.4 km s 1 Mpc 1 . Using a synthetic sample of 100 localized FRBs, the constraint on the fluctuation parameter is improved by a factor of ∼2. Comparing ourFmeasurement to simulated predictions from cosmological simulation (IllustrisTNG), we find agreement between redshifts 0.4 <z andz< 2.0. However, atz< 0.4, the simulations underpredictF, which we attribute to the rapidly changing extragalactic DM excess distribution at low redshift. 
    more » « less
  3. Abstract Recently, room temperature superconductivity was measured in a carbonaceous sulfur hydride material whose identity remains unknown. Herein, first-principles calculations are performed to provide a chemical basis for structural candidates derived by doping H3S with low levels of carbon. Pressure stabilizes unusual bonding configurations about the carbon atoms, which can be six-fold coordinated as CH6entities within the cubic H3S framework, or four-fold coordinated as methane intercalated into the H-S lattice, with or without an additional hydrogen in the framework. The doping breaks degenerate bands, lowering the density of states at the Fermi level (NF), and localizing electrons in C-H bonds. Low levels of CH4doping do not increaseNFto values as high as those calculated for$$Im\bar{3}m$$ I m 3 ¯ m -H3S, but they can yield a larger logarithmic average phonon frequency, and an electron–phonon coupling parameter comparable to that ofR3m-H3S. The implications of carbon doping on the superconducting properties are discussed. 
    more » « less
  4. Abstract Our recent work on linear and affine dynamical systems has laid out a general framework for inferring the parameters of a differential equation model from a discrete set of data points collected from a system being modeled. It introduced a new class of inverse problems where qualitative information about the parameters and the associated dynamics of the system is determined for regions of the data space, rather than just for isolated experiments. Rigorous mathematical results have justified this approach and have identified common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka–Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter and dynamical features in the data space that we call thePn-diagram, which is particularly useful for visualization of the qualitative dependence of the system dynamics on data for low-dimensional (smalln) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associatedP2-diagrams. 
    more » « less
  5. Abstract There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration. 
    more » « less