Abstract We estimate depth‐dependent azimuthal anisotropy and shear wave velocity structure beneath the Alaska subduction zone by the inversion of a new Rayleigh wave dispersion dataset from 8 to 85 s period. We present a layered azimuthal anisotropy model from the forearc region offshore to the subduction zone onshore. In the forearc crust, we find a trench‐parallel pattern in the Semidi and Kodiak segments, while a trench‐oblique pattern is observed in the Shumagins segment. These fast directions agree well with the orientations of local faults. Within the subducted slab, a dichotomous pattern of anisotropy fast axes is observed along the trench, which is consistent with the orientation of fossil anisotropy generated at the mid‐ocean ridges of the Pacific‐Vancouver and Kula‐Pacific plates that is preserved during subduction. Beneath the subducted slab, a trench‐parallel pattern is observed near the trench, which may indicate the direction of mantle flow.
more »
« less
Local- S shear wave splitting along the length of the Alaska–Aleutian subduction zone
SUMMARY The Alaska–Aleutian subduction zone represents an ideal location to study dynamics within a mantle wedge. The subduction system spans several thousand kilometres, is characterized by a slab edge, and has ample seismicity. Additionally, the majority of islands along the arc house broad-band seismic instruments. We examine shear wave splitting of local-S phases originating along the length of the subduction zone. We have dense measurement spacing in two regions, the central Aleutians and beneath Alaska. Beneath Alaska, we observe a rotation in fast splitting directions near the edge of the subducting slab. Fast directions change from roughly trench perpendicular away from the slab edge to trench parallel near the boundary. This is indicative of toroidal flow around the edge of the subducting Alaska slab. In the central Aleutians, local-S splitting is primarily oriented parallel to, or oblique to, the strike of the trench. The local-S measurements, however, exhibit a depth dependence where deeper events show more consistently trench-parallel directions indicating prevalent trench-parallel mantle flow. Our local-S shear wave splitting results suggest trench-parallel orientation are likely present along much of the subduction zone excited by the slab edge, but that additional complexities exist along strike.
more »
« less
- Award ID(s):
- 1949210
- PAR ID:
- 10541642
- Publisher / Repository:
- GJI
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 237
- Issue:
- 3
- ISSN:
- 0956-540X
- Page Range / eLocation ID:
- 1567 to 1574
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Shear wave splitting (SWS) patterns at subduction zones are often interpreted by complex mantle flow above or below the slab. However, our recent previous work shows dipping anisotropic slabs can explain observed patterns in Japan. Here, we extend this analysis to the Alaska subduction zone, using 2,567 high‐quality teleseismic SWS measurements from 195 broadband stations. As was found in Japan, the observed SWS patterns in Alaska depend on earthquake backazimuth. The fast‐S polarization directions are either trench parallel or perpendicular in southeastern Alaska and form a prominent circular pattern in central Alaska. We found that a dipping anisotropic slab following the Slab 2.0 geometry, with 30% shear anisotropy, and exhibiting tilted transverse isotropy with a symmetry axis normal to the slab interface, predicts both the fast‐S polarizations and delay times (δt = 1.0–1.5 s). This suggests that intra‐slab anisotropy can be the primary control on SWS, without requiring complex mantle flow.more » « less
-
We utilized shear wave splitting analysis of teleseismic SKS, SKKS, and PKS phases to infer upper mantle deformational fabrics across a substantial area of Southeast Asia, where splitting measurements were previously limited. We used newly available permanent and temporary broadband seismic networks deployed across the Indo-Burma subduction zone and the eastern Indochina peninsula. The resulting 492 well-constrained splitting and 654 null measurements from 185 stations reveal clear large-scale patterns in the mantle deformational fabrics in response to the highly oblique active subduction and a large transform plate boundary. We identified two distinct domains of mantle deformation fabrics in the western Burma microplate and the eastern Indochina peninsula. In the former, trench parallel N-S fast polarization directions with an average lag time (δt) of 1.9 s are observed beneath the Indo-Burman Ranges. We suggest the observed splitting is partly due to anisotropy in the sub-slab region and relates to shear induced by the north moving Indian plate. The lithospheric fabric within the Indo-Burman Ranges and underlying subducting slab fabric contribute to produce the observed average δt of 1.9 s. The δt value decreases to an average of 1.0 s towards the back-arc until we reach the dextral Sagaing fault. In the second domain, starting approximately 100 km east of the Sagaing fault, we observe a consistent E-W fast direction with an average δt of 1.10 s in the eastern Shan-Thai and Indochina blocks. We interpret the E-W fabric as due to the deformation associated with the westward spreading of the Hainan mantle plume, possibly driven by overriding plate motion. Low velocities in the shallow mantle and late Cenozoic intraplate volcanism in this region support the plume-driven asthenospheric flow model in the Indochina peninsula. The sudden transition of the fast polarization direction from N-S to E-W along the eastern edge of the Burma microplate indicates the Sagaing fault acts as a mantle flow boundary between the subduction dominated trench parallel flow to the west and plume induced asthenospheric flow to the east. We also observed no net splitting beneath the Bengal basin which is most likely due to the presence of frozen vertical fabric resulting from the Kerguelen plume activity during Early Cretaceous.more » « less
-
SUMMARY Increasing evidence from seismic methods shows that anisotropy within subduction zones should consist of multiple layers. To test this, we calculate and model shear wave splitting across the Alaska-Aleutians Subduction Zone (AASZ), where previous studies have argued for separate layers of anisotropy in the subslab, slab and mantle wedge. We present an updated teleseismic splitting catalogue along the span of the AASZ, which has many broad-band seismometers recently upgraded to three components. Splitting observations are sparse in the Western Aleutians, and fast directions are oriented generally trench parallel. There are significantly more splitting measurements further east along the AASZ. We identify six regions in the Central and Eastern Aleutians, Alaskan Peninsula and Cook Inlet with a high density of splits suitable for multilayered anisotropy analyses. These regions were tested for multilayer anisotropy, and for five of the six regions we favour multiple layers over a single layer of anisotropy. We find that the optimal setup for our models is one with a dipping middle layer oriented parallel to palaeospreading. A prominent feature of our modelling is that fast directions above and below the dipping layer are generally oriented parallel to the strike of the slab. Additionally, we lay out a framework for robust and statistically reliable multilayer shear wave splitting modelling.more » « less
-
Abstract Using numerical models, we compute the evolution of the mantle flow field and the crystal preferred orientation (CPO) of mineral aggregates in the mantle wedge of generic subduction systems from their nascent to mature stage and investigate shear wave splitting (SWS) through the forearc mantle wedge corner and overriding crust. Upon subduction initiation, the maximum depth of slab‐mantle decoupling (MDD) is relatively shallow (∼20 km depth), resulting in mantle flow and CPO development in the wedge corner. As subduction continues, the MDD deepens, the wedge corner cools and stagnates, and the olivine CPO becomes frozen‐in. In the cool wedge corner, antigorite can form if water is available. In non‐deforming mantle, antigorite CPO develops relative to the host olivine CPO through topotactic growth. We calculate splitting parameters of synthetic local S waves based on the model‐predicted A‐ and B‐type olivine CPOs and topotactically grown antigorite CPO that replaces A‐type olivine CPO in the wedge corner. The fast direction is trench‐normal for A‐type olivine and antigorite CPOs and trench‐parallel for B‐type. When the delay times are long enough (>0.1 s), we find them positively correlated with the thickness of the mantle wedge corner. In NE Japan, where the results of detailed analyses on the spatial variation of the SWS parameters are available, such correlation is not observationally reported. However, the addition of an anisotropic overriding crust provides delay times (∼0.1 s) and trench‐normal fast directions that are consistent with the local SWS observations.more » « less
An official website of the United States government

