skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multilayer anisotropy along the Alaska-Aleutians Subduction zone
SUMMARY Increasing evidence from seismic methods shows that anisotropy within subduction zones should consist of multiple layers. To test this, we calculate and model shear wave splitting across the Alaska-Aleutians Subduction Zone (AASZ), where previous studies have argued for separate layers of anisotropy in the subslab, slab and mantle wedge. We present an updated teleseismic splitting catalogue along the span of the AASZ, which has many broad-band seismometers recently upgraded to three components. Splitting observations are sparse in the Western Aleutians, and fast directions are oriented generally trench parallel. There are significantly more splitting measurements further east along the AASZ. We identify six regions in the Central and Eastern Aleutians, Alaskan Peninsula and Cook Inlet with a high density of splits suitable for multilayered anisotropy analyses. These regions were tested for multilayer anisotropy, and for five of the six regions we favour multiple layers over a single layer of anisotropy. We find that the optimal setup for our models is one with a dipping middle layer oriented parallel to palaeospreading. A prominent feature of our modelling is that fast directions above and below the dipping layer are generally oriented parallel to the strike of the slab. Additionally, we lay out a framework for robust and statistically reliable multilayer shear wave splitting modelling.  more » « less
Award ID(s):
1949210
PAR ID:
10542082
Author(s) / Creator(s):
;
Publisher / Repository:
GJI
Date Published:
Journal Name:
Geophysical Journal International
Volume:
237
Issue:
3
ISSN:
0956-540X
Page Range / eLocation ID:
1765 to 1779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The Alaska–Aleutian subduction zone represents an ideal location to study dynamics within a mantle wedge. The subduction system spans several thousand kilometres, is characterized by a slab edge, and has ample seismicity. Additionally, the majority of islands along the arc house broad-band seismic instruments. We examine shear wave splitting of local-S phases originating along the length of the subduction zone. We have dense measurement spacing in two regions, the central Aleutians and beneath Alaska. Beneath Alaska, we observe a rotation in fast splitting directions near the edge of the subducting slab. Fast directions change from roughly trench perpendicular away from the slab edge to trench parallel near the boundary. This is indicative of toroidal flow around the edge of the subducting Alaska slab. In the central Aleutians, local-S splitting is primarily oriented parallel to, or oblique to, the strike of the trench. The local-S measurements, however, exhibit a depth dependence where deeper events show more consistently trench-parallel directions indicating prevalent trench-parallel mantle flow. Our local-S shear wave splitting results suggest trench-parallel orientation are likely present along much of the subduction zone excited by the slab edge, but that additional complexities exist along strike. 
    more » « less
  2. Abstract Shear wave splitting (SWS) patterns at subduction zones are often interpreted by complex mantle flow above or below the slab. However, our recent previous work shows dipping anisotropic slabs can explain observed patterns in Japan. Here, we extend this analysis to the Alaska subduction zone, using 2,567 high‐quality teleseismic SWS measurements from 195 broadband stations. As was found in Japan, the observed SWS patterns in Alaska depend on earthquake backazimuth. The fast‐S polarization directions are either trench parallel or perpendicular in southeastern Alaska and form a prominent circular pattern in central Alaska. We found that a dipping anisotropic slab following the Slab 2.0 geometry, with 30% shear anisotropy, and exhibiting tilted transverse isotropy with a symmetry axis normal to the slab interface, predicts both the fast‐S polarizations and delay times (δt = 1.0–1.5 s). This suggests that intra‐slab anisotropy can be the primary control on SWS, without requiring complex mantle flow. 
    more » « less
  3. Abstract Complex shear wave splitting (SWS) patterns in subduction zones are often interpreted geodynamically as resulting from complex mantle flow; however, this may not always be necessary. We analyzed 7,093 high‐quality SWS measurements from teleseismic S waves recorded by Hi‐net stations across the Ryukyu arc in Japan. Our findings show a systematic rotation of the fast S polarization from trench‐parallel to trench‐perpendicular depending on the earthquake backazimuth. For the same earthquake, the measured splitting patterns also vary spatially across the southwest Japan. Using full‐wave seismic modeling, we showed that a dipping slab with ∼30% shear anisotropy of the tilted transverse isotropy (TTI) type, with a symmetry axis perpendicular to the slab interface, can predict the observed delay times and polarization rotation. Our results highlight the importance of considering dipping anisotropic slabs in interpreting SWS at subduction zones. 
    more » « less
  4. Abstract We estimate depth‐dependent azimuthal anisotropy and shear wave velocity structure beneath the Alaska subduction zone by the inversion of a new Rayleigh wave dispersion dataset from 8 to 85 s period. We present a layered azimuthal anisotropy model from the forearc region offshore to the subduction zone onshore. In the forearc crust, we find a trench‐parallel pattern in the Semidi and Kodiak segments, while a trench‐oblique pattern is observed in the Shumagins segment. These fast directions agree well with the orientations of local faults. Within the subducted slab, a dichotomous pattern of anisotropy fast axes is observed along the trench, which is consistent with the orientation of fossil anisotropy generated at the mid‐ocean ridges of the Pacific‐Vancouver and Kula‐Pacific plates that is preserved during subduction. Beneath the subducted slab, a trench‐parallel pattern is observed near the trench, which may indicate the direction of mantle flow. 
    more » « less
  5. SUMMARY The vast majority of teleseismic XKS (including SKS, SKKS and PKS) shear wave splitting studies interpret the observed splitting parameters (fast orientation and splitting time) based on the assumption of a spatially invariant anisotropy structure in the vicinity of a recording station. For such anisotropy structures the observed splitting parameters are either independent of the arriving azimuth of the seismic ray paths if the medium traversed by the ray paths can be represented by a single layer of anisotropy with a horizontal axis of symmetry (i.e. simple anisotropy), or demonstrate a periodic variation with respect to the arriving azimuth for a more complicated structure of anisotropy (e.g. multiple layers with a horizontal axis of symmetry, or a single layer with a dipping axis). When a recording station is located near the boundary of two or more regions with different anisotropy characteristics, the observed splitting parameters are dependent on the location of the ray piercing points. Such a piercing-point dependence is clearly observed using a total of 360 pairs of XKS splitting parameters at three stations situated near the northeastern edge of the Sichuan Basin in central China. For a given station, the fast orientations differ as much as 90°, and the azimuthal variation of the fast orientations lacks a 90° or 180° periodicity which is expected for double-layered or dipping axis anisotropy. The observed splitting parameters from the three stations are spatially most consistent when they are projected at a depth of ∼250 km, and can be explained by shear strain associated with the absolute plate motion and mantle flow deflected by the cone-shaped lithospheric root of the Sichuan Basin. 
    more » « less