Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity.
more »
« less
This content will become publicly available on January 1, 2025
TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale
The advent of large language models (LLMs)
has significantly advanced natural language
processing tasks like text summarization. However,
their large size and computational demands,
coupled with privacy concerns in
data transmission, limit their use in resourceconstrained
and privacy-centric settings. To
overcome this, we introduce TriSum, a framework
for distilling LLMs’ text summarization
abilities into a compact, local model. Initially,
LLMs extract a set of aspect-triple rationales
and summaries, which are refined using a dualscoring
method for quality. Next, a smaller
local model is trained with these tasks, employing
a curriculum learning strategy that evolves
from simple to complex tasks. Our method
enhances local model performance on various
benchmarks (CNN/DailyMail, XSum, and ClinicalTrial),
outperforming baselines by 4.5%,
8.5%, and 7.4%, respectively. It also improves
interpretability by providing insights into the
summarization rationale.
more »
« less
- Award ID(s):
- 1956151
- PAR ID:
- 10541806
- Editor(s):
- Duh, Kevin; G'omez-Adorno, Helena; Bethard, Steven
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- Edition / Version:
- 1
- Page Range / eLocation ID:
- 2805 to 2819
- Subject(s) / Keyword(s):
- Learning Summarization Ability Large Language Models Structured Rationale Text Summarization
- Format(s):
- Medium: X
- Location:
- Mexico City, Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The potential for pre-trained large language models (LLMs) to use natural language feedback at inference time has been an exciting recent development. We build upon this observation by formalizing an algorithm for learning from natural language feedback at training time instead, which we call Imitation learning from Language Feedback (ILF). ILF requires only a small amount of human-written feedback during training and does not require the same feedback at test time, making it both user-friendly and sample-efficient. We further show that ILF can be seen as a form of minimizing the KL divergence to the target distribution and demonstrate proof-of-concepts on text summarization and program synthesis tasks. For code generation, ILF improves a Codegen-Mono 6.1B model’s pass@1 rate from 22% to 36% on the MBPP benchmark, outperforming both fine-tuning on MBPP and on human- written repaired programs. For summarization, we show that ILF can be combined with learning from human preferences to improve a GPT-3 model’s summarization performance to be comparable to human quality, outperforming fine-tuning on human-written summaries. Overall, our results suggest that ILF is both more effective and sample-efficient than training exclusively on demonstrations for improving an LLM’s performance on a variety of tasks.more » « less
-
Baeza-Yates, Ricardo ; Bonchi, Francesco (Ed.)Massive amount of unstructured text data are generated daily, ranging from news articles to scientific papers. How to mine structured knowledge from the text data remains a crucial research question. Recently, large language models (LLMs) have shed light on the text mining field with their superior text understanding and instructionfollowing ability. There are typically two ways of utilizing LLMs: fine-tune the LLMs with human-annotated training data, which is labor intensive and hard to scale; prompt the LLMs in a zero-shot or few-shot way, which cannot take advantage of the useful information in the massive text data. Therefore, it remains a challenge on automated mining of structured knowledge from massive text data in the era of large language models. In this tutorial, we cover the recent advancements in mining structured knowledge using language models with very weak supervision. We will introduce the following topics in this tutorial: (1) introduction to large language models, which serves as the foundation for recent text mining tasks, (2) ontology construction, which automatically enriches an ontology from a massive corpus, (3) weakly-supervised text classification in flat and hierarchical label space, (4) weakly-supervised information extraction, which extracts entity and relation structures.more » « less
-
Data visualizations help extract insights from datasets, but reaching these insights requires decomposing high level goals into low-level analytic tasks that can be complex due to varying degrees of data literacy and visualization experience. Recent advancements in large language models (LLMs) have shown promise for lowering barriers for users to achieve tasks such as writing code and may likewise facilitate visualization insight. Scalable Vector Graphics (SVG), a text-based image format common in data visualizations, matches well with the text sequence processing of transformer-based LLMs. In this paper, we explore the capability of LLMs to perform 10 low-level visual analytic tasks defined by Amar, Eagan, and Stasko directly on SVG-based visualizations. Using zero-shot prompts, we instruct the models to provide responses or modify the SVG code based on given visualizations. Our findings demonstrate that LLMs can effectively modify existing SVG visualizations for some tasks like Cluster but perform poorly on tasks requiring mathematical operations like Compute Derived Value. We also discovered that LLM performance can vary based on factors such as the number of data points, the presence of value labels, and the chart type. Our findings contribute to gauging the general capabilities of LLMs and highlight the need for further exploration and development to fully harness their potential in supporting visual analytic tasks.more » « less
-
Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional performance in various natural language processing tasks and have shown the ability to solve certain reasoning problems. However, their reasoning capabilities are limited and relatively shallow, despite the application of various prompting techniques. In contrast, formal logic is adept at handling complex reasoning, but translating natural language descriptions into formal logic is a challenging task that non-experts struggle with. This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming. Specifically, we employ an LLM to transform natural language descriptions of logic puzzles into answer set programs. We carefully design prompts for an LLM to convert natural language descriptions into answer set programs in a step by step manner. Surprisingly, with just a few in-context learning examples, LLMs can generate reasonably complex answer set programs. The majority of errors made are relatively simple and can be easily corrected by humans, thus enabling LLMs to effectively assist in the creation of answer set programs.more » « less