A bstract Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys. 
                        more » 
                        « less   
                    
                            
                            Novel integrated Sachs-Wolfe effect from early dark energy
                        
                    
    
            We study the nonlinear effects of minimally coupled, massless, cosmological scalar fields on the cosmic microwave background (CMB). These fields can exhibit post-recombination parametric resonance and subsequent nonlinear evolution leading to novel contributions to the gravitational potential. We compute the resulting contributions to the CMB temperature anisotropies through the time-variation of the gravitational potential (i.e., the integrated Sachs-Wolfe (ISW) effect). We find that fields that constitute 5% of the total energy density and become dynamical at zc≃104 can produce marginally observable ISW signals at multipoles ℓ≃2000. Fields that become dynamical at earlier times and/or have initial displacements at a flatter part of their potential, produce ISW contributions that are significantly larger and at higher multipoles. We calculate these dynamics and the resulting evolution of gravitational perturbations using analytic estimates alongside detailed nonlinear lattice simulations, which couple scalar fields and cosmological fluids to a perturbed metric. Finally, we discuss the possibility of detecting these features with future high-resolution CMB observations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009377
- PAR ID:
- 10541867
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 108
- Issue:
- 12
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The class of Galileon scalar fields theories encapsulate the Vainshtein screening mechanism, which is characteristic of a large range of infrared modified theories of gravity. Such theories can lead to testable departures from general relativity through fifth forces and new scalar modes of gravitational radiation. However, the inherent nonlinearity of the Vainshtein mechanism has limited analytic attempts to describe Galileon theories with both cubic and quartic interactions. To improve on this, we perform direct numerical simulations of the quartic Galileon model for a rotating binary source and infer the power spectrum of given multipoles. To tame numerical instabilities we utilize a low-pass filter, extending previous work on the cubic Galileon. Our findings show that the multipole expansion is well defined and under control. Moreover, our results confirm that despite being a nonlinear scalar, the dominant Galileon radiation is quadrupole, and we find a new scaling behavior deep inside the Vainshtein region. Published by the American Physical Society2024more » « less
- 
            Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.more » « less
- 
            Black holes have a unique sensitivity to the presence of ultralight matter fields or modifications of the underlying theory of gravity. In the present paper we combine both features by studying an ultralight, dynamical scalar field that is nonminimally coupled to the gravitational Chern-Simons term. In particular, we numerically simulate the evolution of such a scalar field around a rotating black hole in the decoupling approximation and find a new kind of massive scalar hair anchored around the black hole. In the proximity of the black hole, the scalar exhibits the typical dipolar structure of hairy solutions in (massless) dynamical Chern-Simons gravity. At larger distances, the field transitions to an oscillating scalar cloud that is induced by the mass term. Finally, we complement the time-domain results with a spectral analysis of the scalar field characteristic frequencies.more » « less
- 
            Abstract An observational program focused on the high redshift (2<6) Universe has the opportunity to dramatically improve over upcoming LSS and CMB surveys on measurements of both the standard cosmological model and its extensions. Using a Fisher matrix formalism that builds upon recent advances in Lagrangian perturbation theory, we forecast constraints for future spectroscopic and 21-cm surveys on the standard cosmological model, curvature, neutrino mass, relativistic species, primordial features, primordial non-Gaussianity, dynamical dark energy, and gravitational slip. We compare these constraints with those achievable by current or near-future surveys such as DESI and Euclid, all under the same forecasting formalism, and compare our formalism with traditional linear methods. Our Python code FishLSS — used to calculate the Fisher information of the full shape power spectrum, CMB lensing, the cross-correlation of CMB lensing with galaxies, and combinations thereof — is publicly available.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    