Abstract The streaming instability (SI) is a leading candidate for planetesimal formation, which can concentrate solids through two-way aerodynamic interactions with the gas. The resulting concentrations can become sufficiently dense to collapse under particle self-gravity, forming planetesimals. Previous studies have carried out large parameter surveys to establish the critical particle to gas surface density ratio (Z), above which SI-induced concentration triggers planetesimal formation. The thresholdZdepends on the dimensionless stopping time (τs, a proxy for dust size). However, these studies neglected both particle self-gravity and external turbulence. Here, we perform 3D stratified shearing box simulations with both particle self-gravity and turbulent forcing, which we characterize via a turbulent diffusion parameter,αD. We find that forced turbulence, at amplitudes plausibly present in some protoplanetary disks, can increase the thresholdZby up to an order of magnitude. For example, forτs= 0.01, planetesimal formation occurs whenZ≳ 0.06, ≳0.1, and ≳0.2 atαD= 10−4, 10−3.5, and 10−3, respectively. We provide a single fit to the criticalZrequired for the SI to work as a function ofαDandτs(although limited to the rangeτs= 0.01–0.1). Our simulations also show that planetesimal formation requires a mid-plane particle-to-gas density ratio that exceeds unity, with the critical value being largely insensitive toαD. Finally, we provide an estimation of particle scale height that accounts for both particle feedback and external turbulence.
more »
« less
Reduced Sediment Settling in Turbulent Flows Due To Basset History and Virtual Mass Effects
Abstract The behavior of suspended particles in turbulent flows is a recalcitrant problem spanning wide‐ranging fields including geomorphology, hydrology, and dispersion of particulate matter in the atmosphere. One key mechanism underlying particle suspension is the difference between particle settling velocity (ws) in turbulence and its still water counterpart (wso). This difference is explored here for a range of particle‐to‐fluid densities (1–10) and particle diameter to Kolmogorov micro‐eddy sizes (0.1–10). Conventional models of particle fluxes that equatewstowsoresult in eddy diffusivities and turbulent Schmidt numbers contradictory to laboratory experiments. Incorporating virtual mass and Basset history forces resolves these inconsistencies, providing clarity as to whyws/wsois sub‐unity for the aforementioned conditions. The proposed formulation can be imminently used to model particle settling in turbulence, especially when sediment distribution outcomes over extended time scales far surpassing turbulence time scales are sought.
more »
« less
- Award ID(s):
- 2028633
- PAR ID:
- 10541907
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.more » « less
-
Abstract High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases. Significance StatementDoppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies.more » « less
-
Abstract Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. The particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates the particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to the magnetic field can play an important, if not dominant role. In this study, we carry out two-dimensional fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameterσ0 = 20, we find that the injection energyεinjconverges with increasing domain size toεinj ≃ 10mec2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W∥) and perpendicular (W⊥) electric fields during both the injection phase and the postinjection phase. We find that during the injection phase, theW⊥contribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, on average, both components contribute equally during the postinjection phase, insensitive to the domain size. For high energy (ε ≫ εinj) particles,W⊥dominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas.more » « less
-
Abstract Harmful algal blooms (HABs) pose significant threats to aquatic ecosystems and human health, necessitating efficient mitigation strategies. Although clay-algae aggregation has been widely used for controlling HABs, the slow sedimentation of clay-algae aggregates hampers its effectiveness. We examine how turbulence dynamics affect the formation and settling of clay-algae aggregates. Using a custom-designed plankton tower equipped with an oscillating grid and an in-situ imaging system, we investigated how varying dissipation rates of turbulent kinetic energy (ε = 8 × 10−9to 9 × 10−5m2/s3) affected the removal efficiency ofMicrocystis aeruginosaby laponite clay. In addition, we directly measured the settling velocity and size of clay-algae aggregates over time. The results demonstrate that turbulent mixing, on a time scale typical of the diurnal mixed layer of lakes, can enhance the removal efficiency of HABs by up to threefold. Higher turbulence dissipation rate,ε, leads to an increase in the settling velocity and size of clay-algae aggregates. We demonstrate that the maximum removal efficiency ofMicrocystis aeruginosais achieved when the ratio of the diameter of clay-algae aggregates is half the Kolmogorov length scale. Our findings highlight the importance of turbulence in enhancing clay-based HAB mitigation and provide actionable insights for field applications, such as leveraging natural wind-driven mixing or implementing mechanical agitation in the lakes’ surface mixed layer. This study bridges the gap between well-controlled laboratory experiments and real-world HAB implementation.more » « less
An official website of the United States government

