Internet of Things (IoT) deployments are becoming increasingly automated and vastly more complex. Facilitated by programming abstractions such as trigger-action rules, end-users can now easily create new functionalities by interconnecting their devices and other online services. However, when multiple rules are simultaneously enabled, complex system behaviors arise that are difficult to understand or diagnose. While history tells us that such conditions are ripe for exploitation, at present the security states of trigger-action IoT deployments are largely unknown. In this work, we conduct a comprehensive analysis of the interactions between trigger-action rules in order to identify their security risks. Using IFTTT as an exemplar platform, we first enumerate the space of inter-rule vulnerabilities that exist within trigger-action platforms. To aid users in the identification of these dangers, we go on to present iRuler, a system that performs Satisfiability Modulo Theories (SMT) solving and model checking to discover inter-rule vulnerabilities within IoT deployments. iRuler operates over an abstracted information flow model that represents the attack surface of an IoT deployment, but we discover in practice that such models are difficult to obtain given the closed nature of IoT platforms. To address this, we develop methods that assist in inferring trigger-action information flows based on Natural Language Processing. We develop a novel evaluative methodology for approximating plausible real-world IoT deployments based on the installation counts of 315,393 IFTTT applets, determining that 66% of the synthetic deployments in the IFTTT ecosystem exhibit the potential for inter-rule vulnerabilities. Combined, these efforts provide the insight into the real-world dangers of IoT deployment misconfigurations.
more »
« less
EV Charging Infrastructure Discovery to Contextualize Its Deployment Security
Electric Vehicle Charging Stations (EVCSs) have been shown to be susceptible to remote exploitation due to manufacturer-induced vulnerabilities, demonstrated by recent attacks on this ecosystem. What is more alarming is that compromising these high-wattage IoT systems can be leveraged to perform coordinated oscillatory load attacks against the power grid which could lead to the instability of this critical infrastructure. In this paper, we investigate a previously sidelined aspect of EVCS security. We analyze the deployment security of EVCSs and highlight operator-induced vulnerabilities rendering the ecosystem exposed to remote intrusions. We create an advanced discovery technique that leverages Web interface artifacts to dynamically discover new charging station vendors. As a result, we uncover 33,320 charging station management systems in the wild. Consequently, we study the deployment security of the charging stations and identify that 28,046 EVCSs were found to be vulnerable to eavesdropping, and around 24% of the studied EVCSs are deployed with default configurations exposing the ecosystem to a Mirai-like attack vector. Aligned with this finding, we discover that the EVCS ecosystem has been targeted by nefarious IoT malware such as Mirai and its variants. This demonstrates that further security measures should be implemented by vendors and operators to ensure the security of this vital ecosystem. Consequently, we provide a comprehensive recommendation for securing the deployment of EVCSs.
more »
« less
- Award ID(s):
- 2219773
- PAR ID:
- 10542099
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Network and Service Management
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 2373-7379
- Page Range / eLocation ID:
- 1287 to 1301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks.more » « less
-
Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks.more » « less
-
The Internet-of-Things (IoT) is a large and complex domain. These systems are often constructed using a very diverse set of hardware, software and protocols. This, combined with the ever increasing number of IoT solutions/services that are rushed to market means that most such systems are rife with security holes. Recent incidents (e.g., the Mirai botnet) further highlight such security issues. With emerging technologies such as blockchain and software-defined networks (SDNs), new security solutions are possible in the IoT domain. In this paper we will explore future trends in IoT security: (a) the use of blockchains in IoT security, (b) data provenance for sensor information, (c) reliable and secure transport mechanisms using SDNs (d) scalable authentication and remote attestation mechanisms for IoT devices and (e) threat modeling and risk/maturity assessment frameworks for the domain.more » « less
-
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful “0-day” attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those “0-day” attacks to at least “n-day” attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches.more » « less
An official website of the United States government

