skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs
We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization Ising model on the class of graphs of maximum degree Δ. Proving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that the regime of fast mixing does not extend throughout the regime of tractability for this model: there is a range of parameters for which there exist efficient sampling algorithms for the fixed-magnetization Ising model on max-degree Δ graphs, but the Kawasaki dynamics can take exponential time to mix. Our techniques involve showing spectral independence in the fixed-magnetization Ising model and proving a sharp threshold for the existence of multiple metastable states in the Ising model with external field on random regular graphs.  more » « less
Award ID(s):
2309708
PAR ID:
10542122
Author(s) / Creator(s):
; ; ;
Editor(s):
Kumar, Amit; Ron-Zewi, Noga
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
317
ISSN:
1868-8969
ISBN:
978-3-95977-348-5
Page Range / eLocation ID:
317-317
Subject(s) / Keyword(s):
ferromagnetic Ising model fixed-magnetization Ising model Kawasaki dynamics Glauber dynamics mixing time Mathematics of computing → Markov-chain Monte Carlo methods Theory of computation → Randomness, geometry and discrete structures
Format(s):
Medium: X Size: 24 pages; 1188398 bytes Other: application/pdf
Size(s):
24 pages 1188398 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Megow, Nicole; Smith, Adam (Ed.)
    We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on graphs of maximum degree Δ, where Δ is allowed to grow with n, converges in O((Δ log n)^c) steps where c > 0 is a constant independent of Δ and n. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is O(Δ^c log n) for a constant c > 0 independent of Δ and n. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. This result implies optimal O(log n) mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called k-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph. 
    more » « less
  2. Meka, Raghu (Ed.)
    We prove a hardness of sampling result for the anti-ferromagnetic Ising model on random graphs of average degree d for large constant d, proving that when the normalized inverse temperature satisfies β > 1 (asymptotically corresponding to the condensation threshold), then w.h.p. over the random graph there is no stable sampling algorithm that can output a sample close in W₂ distance to the Gibbs measure. The results also apply to a fixed-magnetization version of the model, showing that there are no stable sampling algorithms for low but positive temperature max and min bisection distributions. These results show a gap in the tractability of search and sampling problems: while there are efficient algorithms to find near optimizers, stable sampling algorithms cannot access the Gibbs distribution concentrated on such solutions. Our techniques involve extensions of the interpolation technique relating behavior of the mean field Sherrington-Kirkpatrick model to behavior of Ising models on random graphs of average degree d for large d. While previous interpolation arguments compared the free energies of the two models, our argument compares the average energies and average overlaps in the two models. 
    more » « less
  3. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Let G = (V,E) be a graph on n vertices and let m^*(G) denote the size of a maximum matching in G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1-δ)m^*(G), the down-up walk on matchings of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for graphs with maximum degree Δ, and our result makes progress on a conjecture of Jain, Perkins, Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O_{Δ,δ}(nlog{n}). In contrast with recent works analyzing mixing of down-up walks in various settings using the spectral independence framework, we bound the spectral gap by constructing and analyzing a suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of the spectral independence approach in our setting. 
    more » « less
  4. Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so‐called high‐temperature regime, where the interaction between neighboring spins is “weak.” Instead, recent work of Jenssen, Keevash, and Perkins yields polynomial‐time algorithms in the low‐temperature regime on bounded‐degree (bipartite) expander graphs using polymer models and the cluster expansion. In order to speed up these algorithms (so the exponent in the run time does not depend on the degree bound) we present a Markov chain for polymer models and show that it is rapidly mixing under exponential decay of polymer weights. This yields, for example, an‐time sampling algorithm for the low‐temperature ferromagnetic Potts model on bounded‐degree expander graphs. Combining our results for the hard‐core and Potts models with Markov chain comparison tools, we obtain polynomial mixing time for Glauber dynamics restricted to appropriate portions of the state space. 
    more » « less
  5. Megow, Nicole; Smith, Adam (Ed.)
    We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof. 
    more » « less