Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so‐called high‐temperature regime, where the interaction between neighboring spins is “weak.” Instead, recent work of Jenssen, Keevash, and Perkins yields polynomial‐time algorithms in the low‐temperature regime on bounded‐degree (bipartite) expander graphs using polymer models and the cluster expansion. In order to speed up these algorithms (so the exponent in the run time does not depend on the degree bound) we present a Markov chain for polymer models and show that it is rapidly mixing under exponential decay of polymer weights. This yields, for example, an
This content will become publicly available on September 1, 2025
Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs
We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization Ising model on the class of graphs of maximum degree Δ. Proving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that the regime of fast mixing does not extend throughout the regime of tractability for this model: there is a range of parameters for which there exist efficient sampling algorithms for the fixed-magnetization Ising model on max-degree Δ graphs, but the Kawasaki dynamics can take exponential time to mix. Our techniques involve showing spectral independence in the fixed-magnetization Ising model and proving a sharp threshold for the existence of multiple metastable states in the Ising model with external field on random regular graphs.
more »
« less
- Award ID(s):
- 2309708
- PAR ID:
- 10542122
- Editor(s):
- Kumar, Amit; Ron-Zewi, Noga
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 317
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-348-5
- Page Range / eLocation ID:
- 317-317
- Subject(s) / Keyword(s):
- ferromagnetic Ising model fixed-magnetization Ising model Kawasaki dynamics Glauber dynamics mixing time Mathematics of computing → Markov-chain Monte Carlo methods Theory of computation → Randomness, geometry and discrete structures
- Format(s):
- Medium: X Size: 24 pages; 1188398 bytes Other: application/pdf
- Size(s):
- 24 pages 1188398 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
‐time sampling algorithm for the low‐temperature ferromagnetic Potts model on bounded‐degree expander graphs. Combining our results for the hard‐core and Potts models with Markov chain comparison tools, we obtain polynomial mixing time for Glauber dynamics restricted to appropriate portions of the state space. -
Megow, Nicole ; Smith, Adam (Ed.)We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.more » « less
-
For general spin systems, we prove that a contractive coupling for an arbitrary local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain O(n log n) mixing time and Ω(1/n) modified log-Sobolev constant of the Glauber dynamics for sampling random q-colorings of an n-vertex graph with constant maximum degree Δ when q > (11/6–∊0)Δ for some fixed ∊0 > 0. We also obtain O(log n) mixing time and Ω(1) modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an n-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of any local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics.more » « less
-
We consider Ising models on the hypercube with a general interaction matrix 𝐽, and give a polynomial time sampling algorithm when all but 𝑂(1) eigenvalues of 𝐽 lie in an interval of length one, a situation which occurs in many models of interest. This was previously known for the Glauber dynamics when \emph{all} eigenvalues fit in an interval of length one; however, a single outlier can force the Glauber dynamics to mix torpidly. Our general result implies the first polynomial time sampling algorithms for low-rank Ising models such as Hopfield networks with a fixed number of patterns and Bayesian clustering models with low-dimensional contexts, and greatly improves the polynomial time sampling regime for the antiferromagnetic/ferromagnetic Ising model with inconsistent field on expander graphs. It also improves on previous approximation algorithm results based on the naive mean-field approximation in variational methods and statistical physics. Our approach is based on a new fusion of ideas from the MCMC and variational inference worlds. As part of our algorithm, we define a new nonconvex variational problem which allows us to sample from an exponential reweighting of a distribution by a negative definite quadratic form, and show how to make this procedure provably efficient using stochastic gradient descent. On top of this, we construct a new simulated tempering chain (on an extended state space arising from the Hubbard-Stratonovich transform) which overcomes the obstacle posed by large positive eigenvalues, and combine it with the SGD-based sampler to solve the full problem.more » « less
-
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of "phases" (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model on the d-regular random graph for all integers q,d ≥ 3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the two phases coexist. The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based on our new structural understanding of the model, we obtain various algorithmic consequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph "planting" argument combined with delicate bounds on random-graph percolation.more » « less