This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands.
more »
« less
A MIMO Monopole Antenna for Harsh Conditions
In this paper, a Multi-Input Multi-Output (MIMO) antenna of 4 monopole elements is presented on Zirconia Ribbon Ceramic (ZRC) substrate. Utilization of this substrate material allows an implementation of an antenna system that is able to withstand harsh environments and high temperatures due to inherent substrate characteristics. The proposed MIMO design supports an operational antenna bandwidth from 2.44 GHz to 2.55 GHz with a center frequency around 2.5 GHz covered by all 4 antenna elements. High antenna isolation below -15 dB is obtained among the ports. The antenna also provides a peak gain over 3 dB through the entire band of interest (3.34 dB at 2.5 GHz) and low cross-polarization.
more »
« less
- Award ID(s):
- 2104513
- PAR ID:
- 10542140
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-4228-2
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Location:
- Portland, OR, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes a full-duplex (FD) antenna design with passive self-interference (SI) suppression for the 28 GHz mmWave band. The reduction in SI is achieved through the design of a novel configuration of stacked Electromagnetic Band Gap structures (EBGs), which create a high impedance path to travelling electromagnetic waves between the transmit and receive antenna elements. The EBG is composed of stacked patches on layers 1 and 2 of a four-layer stack-up configuration. We present the design, optimization, and prototyping of unit antenna elements, stacked EBGs, and integration of stacked EBGs with antenna elements. We also evaluate the design through both HFSS (High Frequency Structure Simulator) and over-the-air measurements in an anechoic chamber. Through extensive evaluations, we show that (i) compared to an architecture that does not use EBGs, the proposed novel stacked EBG design provides an average of 25 dB of additional reduction in SI over 1 GHz of bandwidth, (ii) unit antenna element has over 1 GHz of bandwidth at −10 dB return loss, and (iii) HFSS simulations show close correlation with actual measurement results; however, measured results could still be several dB lower or higher than predicted simulation results. For example, the gap between simulated and measured antenna gains is less than 1 dB for 26–28 GHz and 28.5–30 GHz frequencies, but almost 3 dB for 28–28.5 GHz frequency band.more » « less
-
This paper presents a highly efficient single-layer substrate-integrated waveguide (SIW) based leaky-wave antenna (LWA) for the millimeter-wave unmanned aerial vehicle (UAV) communication system. The leaky wave-based radiating part of the unit cell includes a combination of two Y-shaped slots with 46° stretched V etched on the top SIW, resulting in a W-shaped structure. The proposed array achieves a high gain of 13.47 dBi for the frequency range of 56.3 GHz to 63.4 GHz covering the unlicensed band, with a fine matching level below -21 dB. Using the leaky wave antenna's frequency scanning capability, the proposed antenna exhibits a scanning range of 38°. The designed antenna shows a promising solution for the UAV-to-UAV applications due to its low profile and compactness and is well-suited for the single-layer low-cost printed circuit board fabrication process using Rogers RT 5880 as substrate. The radiation pattern for the achieved bandwidth shows an average half-power angular beamwidth of 12.1°, resulting in a radiation efficiency of more than 62% for the elements arranged uniformly at a distance of 0.456λ . Following an overall low-profile compact size of 6.48×4 λ corresponding to 3.24×0.2 cm and improved performance, the antenna achieves an elliptical polarization at 60 GHz for an axial ratio equal to 3.5 dBi.more » « less
-
A flexible, compact C-shaped coplanar waveguide- fed (CPW-fed) circularly polarized (CP) antenna is proposed for Internet of Things (IoT) applications. The antenna is designed on a polyethylene terephthalate (PET) substrate, enabling flexibility and the potential for conformal integration. The design achieves a wide 3-dB axial ratio bandwidth (ARBW) of 5.66 GHz (79.94%) from 4.25 GHz to 9.91 GHz, demonstrating excellent CP perfor- mance. Additionally, the antenna exhibits a broad 10-dB return loss bandwidth (RLBW) of 7.67 GHz (99.55%) spanning 3.87 GHz to 11.54 GHz, fully encompassing the ARBW. The antenna maintains a peak gain over 3.5 dB and radiation efficiency over 95% within the ARBW. This wide operational range makes the antenna suitable for a variety of wireless communication systems, including WiFi, WiMAX, and emerging 5G technologies.more » « less
-
This research proposes an inkjet printed dual-band dual-sense circularly polarized antenna using CPW-feeding on PET substrate. The antenna is designed and optimized using ANSYS HFSS, which operates at 4.01 GHz - 5.05 GHz (22.96%) and 6.23 GHz - 7.58 GHz (19.55%) with a return loss of <−10 dB. On top of that, the antenna shows an axial ratio of less than 3 dB at 4.23 GHz - 4.62 GHz (8.81%) and 7.11 GHz - 7.36 GHz (3.45%), whereas left hand circular polarization (LHCP) is observed in the first band and right hand circular polarization (RHCP) is observed in the second band. The overall dimensions of the antenna is x x , where is the free-space wavelength at the lowest circular polarization frequency. Measurement of the fabricated version shows good agreement with the simulated version. To the best of author’s knowledge, this proposed design is the first circularly polarized …more » « less
An official website of the United States government

