skip to main content


Title: A MIMO Monopole Antenna for Harsh Conditions
In this paper, a Multi-Input Multi-Output (MIMO) antenna of 4 monopole elements is presented on Zirconia Ribbon Ceramic (ZRC) substrate. Utilization of this substrate material allows an implementation of an antenna system that is able to withstand harsh environments and high temperatures due to inherent substrate characteristics. The proposed MIMO design supports an operational antenna bandwidth from 2.44 GHz to 2.55 GHz with a center frequency around 2.5 GHz covered by all 4 antenna elements. High antenna isolation below -15 dB is obtained among the ports. The antenna also provides a peak gain over 3 dB through the entire band of interest (3.34 dB at 2.5 GHz) and low cross-polarization.  more » « less
Award ID(s):
2104513
PAR ID:
10542140
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-4228-2
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Location:
Portland, OR, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands.

     
    more » « less
  2. This paper presents a highly efficient single-layer substrate-integrated waveguide (SIW) based leaky-wave antenna (LWA) for the millimeter-wave unmanned aerial vehicle (UAV) communication system. The leaky wave-based radiating part of the unit cell includes a combination of two Y-shaped slots with 46° stretched V etched on the top SIW, resulting in a W-shaped structure. The proposed array achieves a high gain of 13.47 dBi for the frequency range of 56.3 GHz to 63.4 GHz covering the unlicensed band, with a fine matching level below -21 dB. Using the leaky wave antenna's frequency scanning capability, the proposed antenna exhibits a scanning range of 38°. The designed antenna shows a promising solution for the UAV-to-UAV applications due to its low profile and compactness and is well-suited for the single-layer low-cost printed circuit board fabrication process using Rogers RT 5880 as substrate. The radiation pattern for the achieved bandwidth shows an average half-power angular beamwidth of 12.1°, resulting in a radiation efficiency of more than 62% for the elements arranged uniformly at a distance of 0.456λ . Following an overall low-profile compact size of 6.48×4 λ corresponding to 3.24×0.2 cm and improved performance, the antenna achieves an elliptical polarization at 60 GHz for an axial ratio equal to 3.5 dBi. 
    more » « less
  3. Abstract

    In this paper, a slotted circular ultra‐wideband (UWB) microstrip patch antenna is reported. The antenna is designed, simulated, fabricated, and tested experimentally. The antenna operates over a 4.0‐40 GHz (164% fractional bandwidth) range with a return loss of 10 dB and voltage standing wave ratio (VSWR) < 2. The designed monopole antenna is of dimensions 28.1 mm × 17.1 mm with an electrical size of 0.37 λ × 0.23 λ at 4 GHz frequency. The antenna is fabricated on FR‐4 substrate with a dielectric permittivity of 4.4, loss tangent of 0.02, and a thickness of 1.4 mm. The designed antenna exhibits nearly omnidirectional radiation patterns over the entire impedance bandwidth with more than 2.8 dB peak gain for the entire frequency range and 75% of average radiation efficiency. The presented antenna can be used in UWB communications along with C‐band, X‐band, Ku‐band, K‐band, Ka‐band, WLAN, and future wireless applications.

     
    more » « less
  4. This research proposes an inkjet printed dual-band dual-sense circularly polarized antenna using CPW-feeding on PET substrate. The antenna is designed and optimized using ANSYS HFSS, which operates at 4.01 GHz - 5.05 GHz (22.96%) and 6.23 GHz - 7.58 GHz (19.55%) with a return loss of <−10 dB. On top of that, the antenna shows an axial ratio of less than 3 dB at 4.23 GHz - 4.62 GHz (8.81%) and 7.11 GHz - 7.36 GHz (3.45%), whereas left hand circular polarization (LHCP) is observed in the first band and right hand circular polarization (RHCP) is observed in the second band. The overall dimensions of the antenna is x x , where is the free-space wavelength at the lowest circular polarization frequency. Measurement of the fabricated version shows good agreement with the simulated version. To the best of author’s knowledge, this proposed design is the first circularly polarized … 
    more » « less
  5. Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology to aid wireless communication. However, the potential of using RIS to mitigate directed energy weapons (DEW) is not widely recognized. In this paper, we propose to leverage RIS (based on spiral antenna elements) to aid the mitigation of high-energy radio-frequency (RF) sources applied to a DEW. For example, integrating a broadband circularly-polarized antenna system with RIS technology can successfully mitigate DEW attacks across a wide range of frequencies regardless of how the radio waves are polarized. We simulated a spiral antenna that operates within a frequency band of 1.3 GHz to 7 GHz with a 3-dB axial ratio bandwidth (ARBW) covering from 2 GHz to 7 GHz. Full-wave simulation results show the potential promising application of RIS for the mitigation of DEW attacks. 
    more » « less