Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using
This content will become publicly available on April 1, 2025
We present optical observations and analysis of the bright type Iax supernova SN 2020udy hosted by NGC 0812. The evolution of the light curve of SN 2020udy is similar to that of other bright type Iax SNe. Analytical modeling of the quasi-bolometric light curves of SN 2020udy suggests that 0.08 ± 0.01
- Award ID(s):
- 1911225
- PAR ID:
- 10542372
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 965
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 73
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract TARDIS , an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away. -
Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe.more » « less
-
Abstract We present photometric and spectroscopic data for the nearby Type I supernova (SN Ia) 2019eix (originally classified as an SN Ic), from the day of its discovery up to 100 days after maximum brightness. Before maximum light, SN 2019eix resembles a typical SN Ic, albeit lacking the usual O
i feature. Its light curve is similar to the typical SN Ic with decline rates (ΔM 15,V = 0.84) and absolute magnitudeM V = −18.35. However, after maximum light, this SN has unusual spectroscopic features, a large degree of line blending, significant line blanketing in the blue (λ < 5000 Å), and strong Caii absorption features during and after peak brightness. These unusual spectral features are similar to models of subluminous thermonuclear explosions, specifically double-detonation models of SNe Ia. Photometrically, SN 2019eix appears to be somewhat brighter with slower decline rates than other double-detonation candidates. We modeled the spectra using the radiative-transfer codeTARDIS using SN 1994I (an SN Ic) as a base model to see whether we could reproduce the unusual features of SN 2019eix and found them to be consistent with the exception of the Oi feature. We also compared SN 2019eix with double-detonation models and found them to best match the observations of SN 2019eix, but failed to reproduce its full photometric and spectroscopic evolution. -
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (
flash ) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi , Hei/ii , Civ , and Niii/iv/v with a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr ≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,M u = −18.6 mag,M g = −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGEN and the radiation-hydrodynamics codeHERACLES suggests dense, solar-metallicity CSM confined tor = (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofv w = 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwind phase) during the last ∼3–6 yr before explosion. -
Abstract We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its light curve, similarly to other well-studied Type IIb SNe. This early-time emission is thought to originate from the cooling of the extended outer hydrogen-rich (H-rich) envelope of the progenitor star that is shock heated by the SN explosion. We compare SN 2020bio to a sample of other double-peaked Type IIb SNe in order to investigate its progenitor properties. Analytical model fits to the early-time emission give progenitor radius (≈100–1500
R ⊙) and H-rich envelope mass (≈0.01–0.5M ⊙) estimates that are consistent with other Type IIb SNe. However, SN 2020bio displays several peculiarities, including (1) weak H spectral features indicating a greater amount of mass loss than other Type IIb progenitors; (2) an underluminous secondary light-curve peak that implies a small amount of synthesized56Ni (M Ni≈0.02M ⊙); and (3) low-luminosity nebular [Oi ] and interaction-powered nebular features. These observations are more consistent with a lower-mass progenitor (M ZAMS≈ 12M ⊙) that was stripped of most of its H-rich envelope before exploding. This study adds to the growing diversity in the observed properties of Type IIb SNe and their progenitors.