skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting Nosy: Olfactory Rosette Morphology and Lamellar Microstructure of Two Chondrichthyan Species
Synopsis To smell, fish rely on passive water flow into their olfactory chambers and through their olfactory rosettes to detect chemical signals in their aquatic environment. The olfactory rosette is made up of secondarily folded tissues called olfactory lamellae. The olfactory morphology of cartilaginous fishes varies widely in both rosette gross morphology and lamellar microstructure. Previous research has shown differences in lamellar sensory morphology depending on the position along the rosette in hammerheads (family Sphyrnidae). Here, we investigate if this pattern continues in members of two other chondrichthyan families: Squalidae and Chimaeridae. Using contrast-enhanced microCT and scanning electron microscopy, we investigated patterns in lamellar morphology based on lamellar position along the olfactory rosette in Pacific spiny dogfish (Squalus suckleyi) and spotted ratfish (Hydrolagus colliei). We describe the gross olfactory rosette anatomy and lamellar microstructure of both species. We also put forth a new method, combining 3D morphological microCT data with 2D SEM microstructure data to better approximate lamellar sensory surface area. We found that in both species, lamellae in the center of the rosette were larger with more secondary folds. However, we found no significant differences in lamellar sensory surface area among lamellar positions. Previously, differences in lamellar sensory morphology have been tied to the internal fluid dynamics of the olfactory chamber. It is possible that the internal flow dynamics of these species are like other chondrichthyan models, where water flow patterns differ in the lateral vs the medial part of the organ, and the consistent distribution of sensory tissue does not correspond to this flow. Alternatively, the olfactory morphology of these species may result in uniform flow patterns throughout the olfactory chamber, correlating with the consistent distribution of sensory tissue throughout the organ. This study emphasizes that further investigations into chondrichthyan fluid dynamics is paramount to any future studies on the correlations between distribution of sensory tissues and water flow.  more » « less
Award ID(s):
2109408
PAR ID:
10542489
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
64
Issue:
2
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 441-458
Size(s):
p. 441-458
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundGiven the need for descriptive and increasingly mechanistic morphological analyses, contrast‐enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro‐level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA‐enhanced microCT. ResultsOur protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution. ConclusionThese protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position. 
    more » « less
  2. Human pluripotent stem cell (hPSC)-derived neural organoids display unprecedented emergent properties. Yet in contrast to the singular neuroepithelial tube from which the entire central nervous system (CNS) develops in vivo, current organoid protocols yield tissues with multiple neuroepithelial units, a.k.a. neural rosettes, each acting as independent morphogenesis centers and thereby confounding coordinated, reproducible tissue development. Here, we discover that controlling initial tissue morphology can effectively (>80%) induce single neural rosette emergence within hPSC-derived forebrain and spinal tissues. Notably, the optimal tissue morphology for observing singular rosette emergence was distinct for forebrain versus spinal tissues due to previously unknown differences in ROCK-mediated cell contractility. Following release of geometric confinement, the tissues displayed radial outgrowth with maintenance of a singular neuroepithelium and peripheral neuronal differentiation. Thus, we have identified neural tissue morphology as a critical biophysical parameter for controlling in vitro neural tissue morphogenesis furthering advancement towards biomanufacture of CNS tissues with biomimetic anatomy and physiology. 
    more » « less
  3. Abstract Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system. 
    more » « less
  4. The extensive chondrichthyan fossil record spans 400+ million years and has a global distribution. Paleontological studies provide a foundation of description and taxonomy to support deeper forays into ecology and evolution considering geographic, morphologic, and functional changes through time with nonanalog species and climate states. Although chondrichthyan teeth are most studied, analyses of dermal denticle metrics and soft tissue imprints are increasing. Recent methodological advances in morphology and geochemistry are elucidating fine-scale details, whereas large datasets and ecological modeling are broadening taxonomic, temporal, and geographic perspectives. The combination of ecological metrics and modeling with environmental reconstruction and climate simulations is opening new horizons to explore form and function, demographic dynamics, and food web structure in ancient marine ecosystems. Ultimately, the traits and taxa that endured or perished during the many catastrophic upheaval events in Earth's history contribute to conservation paleobiology, which is a much-needed perspective for extant chondrichthyans.▪The longevity and abundance of the chondrichthyan fossil record elucidates facets of ecological, evolutionary, and environmental histories.▪Though lacking postcranial, mineralized skeletons, dental enameloid and dermal denticles exquisitely preserve morphology and geochemistry.▪Technical advances in imaging, geochemistry, and modeling clarify the linkages between form and function with respect to physiology, diet, and environment.▪Conservation efforts can benefit from the temporal and spatial perspective of chondrichthyan persistence through past global change events. 
    more » « less
  5. Synopsis The peripheral sensory systems, whose morphological attributes help determine the acquisition of distinct types of information, provide a means to quantitatively compare multiple modalities of a species’ sensory ecology. We used morphological metrics to characterize multiple sensory modalities—the visual, olfactory, and mechanosensory lateral line sensory systems—for Gasterosteus aculeatus, the three-spined stickleback, to compare how sensory systems vary in animals that evolve in different ecological conditions. We hypothesized that the dimensions of sensory organs and correlations among sensory systems vary in populations adapted to marine and freshwater environments, and have diverged further among freshwater lake-dwelling populations. Our results showed that among environments, fish differed in which senses are relatively elaborated or reduced. When controlling for body length, littoral fish had larger eyes, more neuromasts, and smaller olfactory tissue area than pelagic or marine populations. We also found differences in the direction and magnitude of correlations among sensory systems for populations even within the same habitat type. Our data suggest that populations take different trajectories in how visual, olfactory, and lateral line systems respond to their environment. For the populations we studied, sensory modalities do not conform in a predictable way to the ecological categories we assigned. 
    more » « less