skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of γ/γ′ interface free energy for solid state precipitation in Ni–Al alloys from molecular dynamics simulation
Interface free energy is a fundamental material parameter needed to predict the nucleation and growth of new phases. The high cost of experimentally determining this parameter makes it an ideal target for calculation through a physically informed simulation. Direct determination of interface free energy has many challenges, especially for solid–solid transformations. Indirect determination of the interface free energy from the nucleation data has been done in the case of solidification. However, a slow on molecular dynamics (MD) simulation time scale atomic diffusion makes this method not applicable to the case of nucleation from the solid phase when precipitate composition is different from that in matrix. To address this challenge, we outline the development of a new technique for determining the critical nucleus size from an MD simulation using a recently developed method to accelerate solid-state diffusion. The accuracy of our approach for the Ni–Al system for Ni3Al (γ′) precipitates in a Ni–Al (γ) matrix is demonstrated well within experimental accuracy and greatly improves upon previous computational methods [Herrnring et al., Acta Mater. 215(8), 117053 (2021)].  more » « less
Award ID(s):
2119103
PAR ID:
10542598
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
4
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A multistep phase sequence following the crystallization of amorphous Al2O3 via solid-phase epitaxy (SPE) points to methods to create low-defect-density thin films of the metastable cubic γ-Al2O3 polymorph. An amorphous Al2O3 thin film on a (0001) α-Al2O3 sapphire substrate initially transforms upon heating to form epitaxial γ-Al2O3, followed by a transformation to monoclinic θ-Al2O3, and eventually to α-Al2O3. Epitaxial γ-Al2O3 layers with low mosaic widths in X-ray rocking curves can be formed via SPE by crystallizing the γ-Al2O3 phase from amorphous Al2O3 and avoiding the microstructural inhomogeneity arising from the spatially inhomogeneous transformation to θ-Al2O3. A complementary molecular dynamics (MD) simulation indicates that the amorphous layer and γ-Al2O3 have similar Al coordination geometry, suggesting that γ-Al2O3 forms in part because it involves the minimum rearrangement of the initially amorphous configuration. The lattice parameters of γ-Al2O3 are consistent with a structure in which the majority of the Al vacancies in the spinel structure occupy sites with tetrahedral coordination, consistent with the MD results. The formation of Al vacancies at tetrahedral spinel sites in epitaxial γ-Al2O3 can minimize the epitaxial elastic deformation of γ-Al2O3 during crystallization. 
    more » « less
  2. Crystallization due to liquid → solid transformation is observed in many natural and engineering processes. Extant literature indicates that crystallization in supercooled liquids is initiated by precursory metastable phases or states, also called non-classical nucleation. For face-centered cubic (FCC) materials, latest experimental and computational studies suggest that metastable hexagonal-closed packed (HCP) structures facilitate equilibrium FCC formation. However, the underlying nucleation mechanism remains unclear. Here, we examine structural changes and energetic barriers associated with such a non-classical mechanism, by performing molecular dynamics (MD) simulations using pure Al, Al-0.5 at. %Cu, and Al-0.5 at. %Ni (all FCC-formers) and phenomenologically coupling MD results with phase-field (PF) modeling. Such a coupling involved initializing PF simulation domains and constructing Landau polynomials—consistent with MD observations. Unsupervised machine learning was utilized to capture nuclei structures from MD simulations, while neural networks helped in extracting equilibrium interfacial energies from PF modeling. Atomistic simulations showed that precursory nuclei are comprised of collection of metastable-HCP states with medium ranged ordering. The pockets of HCP states later transform to critical nuclei—containing an FCC core and an outer layer of HCP. PF modeling qualitatively replicated the precursory-to-critical nuclei transformation and showed that the energetic barriers between the precursory and critical nuclei are substantially smaller than predictions obtained from classical nucleation theory. Together, these observations permitted us to propose a holistic non-classical mechanism that links triangular motifs within Al-based supercooled liquids to the critical nuclei via in-liquid structural transformations. 
    more » « less
  3. Here, we study the homogenization behavior and microstructure of seven Ni-Al-Ti alloys with quaternary additions of γ forming elements 4Cr, 4Co, 4Ru, 4Mo, 4Hf, 4 W and 2Re. To design a homogenization treatment, the as-cast microstructure is analyzed revealing the diffusion distances x between dendrite cores and interdendritic regions. The temperatures for homogenization are determined using differential scanning calorimetry (DSC) and Thermo-Calc simulations, to be between 1150 and 1275 °C. The time to achieve homogenization is modelled based on the residual segregation index δ utilizing diffusion distance, homogenization temperature and diffusion data. Electron probe micro analyzer (EPMA) measurements show that our predictions match for the 4Cr, 4Co, 4Ru, 4 W and 2Re alloys while the 4Hf alloy shows insufficient homogenization. Transmission electron microscopy (TEM) reveals a two-phase γ/γ’ microstructure after 750 °C / 24 h, whereby the 4Co and 4Ru alloys form hierarchical microstructures. We observe γ plates in the 4Co alloy and γ spheres in the 4Ru alloy. Ru in the 4Ru alloy is involved in stabilizing the morphology of γ spheres. We provide a straightforward method for the design of homogenization treatments of Ni-based superalloys and demonstrate an alloy design pathway for tailoring the phase stability of hierarchical microstructures. 
    more » « less
  4. Molecular dynamics (MD) simulations are invoked to simulate the diffusion process and microstructural evolution at the solid–liquid, cast-rolled Al–Cu interfaces. K-Means clustering algorithm is used to identify the formation and composition of two types of nanostructural features in the Al-rich and Cu-rich regions of the interface (i.e., the intermetallic Al2Cu near the Al-rich interface and the intermetallic Al4Cu9 near the Cu-rich interface). MD simulations are also used to assess the effects of annealing temperature on the evolution of the compositionally graded microstructural features at the Al–Cu interfaces and to characterize the mechanical strength of the Al–Cu interfaces. It is found that the failure of the Al–Cu interface takes place at the Al-rich side of the interface (Al2Cu–Al) which is mechanically weaker than the Cu-rich side of the interface (Cu–Al4Cu9), which is also verified by the nanoindentation studies of the interfaces. Centrosymmetry parameter analyses and dislocation analyses are used to understand the microstructural features that influence deformation behavior leading to the failure of the Al–Cu interfaces. Increasing the annealing temperature reduces the stacking fault density at the Al–Cu interface, suppresses the generation of nanovoids which are precursors for the initiation of fracture at the Al-rich interface, and increases the strength of the interface. 
    more » « less
  5. The Classical Nucleation Theory (CNT) has played a key role in crystal nucleation studies since the 19th century and has significantly advanced the understanding of nucleation. However, certain key assumptions of CNT, such as a compact and spherical nucleating cluster and the concept of individual diffusive jumps are questionable. The results of molecular dynamics (MD) studies of crystal nucleation in a Al 20 Ni 60 Zr 20 metallic liquid demonstrate that the nucleating cluster is neither spherical nor compact. The seeding method was employed to determine the critical cluster size and nucleation parameters from CNT, which were then compared to those derived from the Mean First Passage Time (MFPT) method. While the CNT-based nucleation rate aligns well with experimental data from similar metallic liquids, the MFPT rate differs significantly. Further, contrary to the assumption of individual jumps for atoms to join the nucleating cluster, a cooperative mechanism of attachment or detachment is observed. This is accompanied by synchronized changes in the local potential energy. Similar cooperative motion also appeared in a non-classical nucleation process, particularly during the coalescence of nuclei. 
    more » « less