skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Systematic Implementation of Four Versions of a Course-Based Intervention to Reduce Attrition Among Civil Engineering Students: Overall Study Design and Implementation of First Version
This works seeks to develop and assess a retention intervention that addresses the key drivers of attrition and learns from existing interventions for engineering students. The resulting intervention addresses key competencies for the major and profession, and also addresses a gap in current approaches: the need to synergistically support students’ social-cognitive disposition with respect to attrition by training them in social-cognitive skills and strategies adapted from the theories of Sense of Belonging (SOB) and Self-Regulation of Learning (SRL). Because the degree of skills and strategies around SRL and SOB needed to make the largest impact to retention is unknown, four versions of the intervention are proposed: A base intervention which provokes students to think about their learning and belonging, an intervention augmented with specific training in effective SRL, an intervention augmented with specific training in SOB; and an intervention augmented with training in both effective SRL and SOB. An overarching research design plans the offering and assessment of each version of the intervention, including a numerical longitudinal analysis of retention at the end of the study, with the ultimate goal of identifying which version of the intervention has the largest positive impact to retention and other key metrics. After a general description of the intervention as a while, the focus was reoriented to the base version of the intervention. The detailed design was presented along with the assessment methods for short-term effectiveness and the preliminary results for its first offering in Fall 2022. Overall, students found the topics covered in the intervention to be helpful and used many of the skills and strategies from the intervention in other major courses. The impact of the intervention on performance in major courses taken alongside the intervention and their persistence rate in the major for another semester improved significantly for one major course but were inconclusive for a second major course. Recommendations were made to refine the materials provided to students and several of the activities in the base intervention; and the formative assessment tool.  more » « less
Award ID(s):
2235705
PAR ID:
10542626
Author(s) / Creator(s):
Publisher / Repository:
ASEE Conferences
Date Published:
Subject(s) / Keyword(s):
STEM education retention sense of belonging self-regulation of learning
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. 
    more » « less
  2. SPARK is the first project at Texas State University designed to recruit and retain low income, female, first year students who show an early interest in majoring in engineering and computer science (ECS). Female students who show an initial extrinsic interest in these majors can be driven away far too easily by their experiences. SPARK has two primary goals: (1) create an environment where belonging to a like-minded cohort nurtures a strong sense of self, and (2) deliver high quality, high impact practices that engender female students’ success and retention in ECS. Guided by Albert Bandura and Frank Pajares’ research on self-efficacy in theory and practice, the SPARK project sheds light on self-efficacy and confidence as predictive of persistence for female students in ECS. Additionally, the effect of SPARK students’ spatial visualization skills was assessed and tracked throughout the life of the project, utilizing Sheryl Sorby’s research correlating spatial visualization skills to STEM success. Current research-based approaches to student engagement provide good evidence that mattering and sense of belonging are also highly correlative with persistence, particularly for first year students. This is important because the national conversation on what works to mend the gender gap in STEM is currently wedged between Sheryl Sandberg’s “leaning in” and Angela Duckworth’s views on “grit” as an indicator of persistence. In this paper, we will discuss the context and history of the SPARK program, present assessment outcomes about impact to date, share lessons learned, and consider future directions. This work will contribute to the growing body of research on retaining females in ECS by developing and analyzing student motivation; recognizing factors that may contribute to aspirational deficient, attrition, and marginalization; and designing and assessing activities that strengthen self-confidence, self-efficacy, and persistence in retention programs for females in ECS. 
    more » « less
  3. Engineering requires more bachelor’s degree graduates to meet the growing demand for engineering skills globally. One way to address this demand is increasing student degree completion, which is lower than higher education in general. In particular, Black, Latino/a/x, and Indigenous (BLI) students are less likely to complete an engineering degree than their peers. BLI students experience a host of unwelcoming behaviors in engineering environments that contribute to departure without their intended degree. Improving environments to support belonging may offer one solution. Through an ecological belonging intervention, we seek to improve continued enrollment and increase belonging. Quasi-experimental methods were used in a second-semester engineering programming course. Surveys collected before and after an intervention combined with institutional data were used to test the moderation effects of the intervention on continued enrollment in engineering during the semester following the intervention. BLI students who were enrolled in intervention treatment sections were more likely to be enrolled in engineering the following fall. The intervention treatment increased belonging such that control section participants were less likely to continue to be enrolled in engineering. While research to assess the efficacy and mechanisms of the intervention is ongoing, the intervention offers promising results to address attrition, particularly for BLI students. 
    more » « less
  4. This complete research paper describes the impact of a modeling intervention on first-year engineering students’ modeling skills in an introductory computer programming course. Five sections of the first-year engineering introductory programming course at a private, STEM+Business institution were revised to center around modeling concepts. These five sections made up the experimental group for this study. The comparison group consisted of four sections of the course that were not revised. Students in all these sections were given two different versions of a modeling problem two times in the semester to test their progress in gaining modeling skills. Each version required two submissions – a written solution and a coded solution. The assessment of these four submissions based on the three established dimensions of modeling were quantitatively analyzed in this study. The three dimensions within mathematical modeling that were the focus of this study were mathematical model complexity, modifiability, and reusability. Mathematical model complexity is being able to address the complexity of the problem. Modifiability addresses the generalizability of the model solution. Reusability is showing an understanding of the problem and the user. Statistical analysis showed that students in the experimental group had more gains in their demonstrated modeling abilities across all three dimensions than the students in the comparison group. This study demonstrated that intentional and explicit instructional strategies targeting model development resulted in greater gains in students’ demonstrated modeling skills and both their written and coded solutions to a complex modeling problem. 
    more » « less
  5. The ability to communicate technical information in written, graphical, and verbal formats is an essential durable skill for engineering students to develop as undergraduates and carry forward into the workplace. Employers have highlighted recent graduates’ inability to formulate tight, cohesive arguments for their engineering decisions, as well as difficulties adjusting their communication style for different audiences. Even though accreditation outcomes now explicitly include durable skills, such as “an ability to communicate effectively with a range of audiences,” prior research suggests that the field is still far from meeting industry expectations for proficiency in the varying modalities and styles of workplace communication. Laboratory courses are frequently relied upon to teach or reinforce writing and presentation skills. There are two major issues with this approach. First, in lab classes, the communication method is typically narrowly focused on reports that simulate writing for hypothesis-driven research projects, which fail to align with the design-based and project management aspects of professional engineering workloads. Second, lab courses that heavily emphasize technical communications frequently do so at the expense of technical knowledge, that is, the engineering concepts involved with the laboratory experiment. Many students already view communication skills as “soft” in comparison to technical knowledge; and this attitude affects their performance and retention. In this paper, we present the design and implementation of a stand-alone technical communications course that was specifically created for first-year mechanical engineering students and centered on multiple, industry-aligned modalities of communication. There are two major writing assignments in the course, both of which are open-ended “technical briefs” that involve background research, data analysis, and justification of an engineering decision for a design firm. For these major assignments, students individually submit a draft and receive detailed feedback for improvement before submitting the final versions. These two major assignments are scaffolded with weekly individual assignments that give students experience with a range of communication skills and modalities, e.g., using a reference manager and composing professional emails. To gauge the effectiveness of this stand-alone course in improving students’ technical communication skills, we conducted pre- and post-course surveys of all students enrolled in the course in 2023 (n=147), and we also tracked improvements in technical writing from draft to final form via established rubrics. Students demonstrated gains in self-efficacy for nearly all technical communication skills covered in the course as well as improved self-efficacy in different communication modalities, e.g., email, slide presentations, and executive summaries. The results of this evaluation suggest that a stand-alone, industry-centered technical communications course builds student competency with communication strategies used in the workplace. Future work will focus on whether students are able to transfer these skills into latter courses and ultimately their careers. 
    more » « less