Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Greenhouse gas emissions from the residential sector represent a large fraction of global emissions and must be significantly curtailed to achieve ambitious climate goals. To stimulate the adoption of relevant technologies such as rooftop PV and heat pumps, governments and utilities have designedincentivesthat encourage adoption of decarbonization technologies. However, studies have shown that many of these incentives are inefficient since a substantial fraction of spending does not actually promote adoption. Further, these incentives are not equitably distributed across socioeconomic groups. In this article, we present a novel data-driven approach that adopts a holistic, emissions-based, and city-scale perspective on decarbonization. We propose an optimization model that dynamically allocates a total incentive budget to households to directly maximize the resultantcarbon emissions reduction– this is in contrast to prior work, which focuses on metrics such as the number of new installations. We leverage techniques from the multi-armed bandits problem to estimatehuman factors, such as a household’s willingness to adopt new technologies given a certain incentive. We apply our proposed dynamic incentive framework to a city in the Northeast U.S., using real household energy data, grid carbon intensity data, and future price scenarios. We compare our learning-based technique to two baselines, one “status-quo” baseline using incentives offered by a state and utility, and one simple heuristic baseline. With these baselines, we show that our learning-based technique significantly outperforms both the status-quo baseline and the heuristic baseline, achieving up to 37.88% higher carbon reductions than the status-quo baseline and up to 28.76% higher carbon reductions compared to the heuristic baseline. Additionally, our incentive allocation approach is able to achieve significant carbon reduction even in a broad set of environments, with varying values for electricity and gas prices, and for carbon intensity of the grid. Finally, we show that our framework can accommodateequity-awareconstraints to preserve an equitable allocation of incentives across socioeconomic groups while achieving 83.34% of the carbon reductions of the optimal solution on average.more » « lessFree, publicly-accessible full text available September 30, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
Free, publicly-accessible full text available June 9, 2026
-
Free, publicly-accessible full text available May 6, 2026
-
As solar electricity has become cheaper than the retail electricity price, residential consumers are trying to reduce costs by meeting more demand using solar energy. One way to achieve this is to invest in the solar infrastructure collaboratively. When houses form a coalition, houses with high solar potential or surplus roof capacity can install more panels and share the generated solar energy with others, lowering the total cost. Fair sharing of the resulting cost savings across the houses is crucial to prevent the coalition from breaking. However, estimating the fair share of each house is complex as houses contribute different amounts of generation and demand in the coalition, and rooftop solar generation across houses with similar roof capacities can vary widely. In this paper, we present HeliosFair, a system that minimizes the total electricity costs of a community that shares solar energy and then uses Shapley values to fairly distribute the cost savings thus obtained. Using real-world data, we show that the joint CapEx and OpEx electricity costs of a community sharing solar can be reduced by 12.7% on average (11.3% on average with roof capacity constraints) over houses installing solar energy individually. Our Shapley-value-based approach can fairly distribute these savings across houses based on their contributions towards cost reduction, while commonly used ad hoc approaches are unfair under many scenarios. HeliosFair is also the first work to consider practical constraints such as the difference in solar potential across houses, rooftop capacity and weight of solar panels, making it deployable in practice.more » « less
An official website of the United States government

Full Text Available