skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: IRAS4A1: Multiwavelength continuum analysis of a very flared Class 0 disk
Context. Understanding the formation of substructures in protoplanetary disks is vital for gaining insights into dust growth and the process of planet formation. Studying these substructures in highly embedded Class 0 objects using the Atacama Large Millimeter-submillimeter Array (ALMA), however, poses significant challenges. Nonetheless, it is imperative to do so to unravel the mechanisms and timing behind the formation of these substructures. Aims. In this study, we present high-resolution ALMA data at Bands 6 and 4 of the NGC 1333 IRAS4A Class 0 protobinary system. This system consists of two components, A1 and A2, which are separated by 1.8″ and located in the Perseus molecular cloud at a distance of ~293 pc. Methods. To gain a comprehensive understanding of the dust properties and formation of substructures in the early stages, we conducted a multiwavelength analysis of IRAS4A1. Additionally, we sought to address whether the lack of observed substructures in very young disks could be attributed to factors such as high degrees of disk flaring and large scale heights. To explore this phenomenon, we employed radiative transfer models using RADMC-3D. We employed different approaches and compared the model outcomes with our observational data. This comparison allowed us to gain insights into the challenges in detecting substructures in nascent disks and shed light on the potential influence of the dust scale height on observations of protoplanetary disks. Results. The continuum data revealed the presence of two disks-envelopes around A1 and A2, along with structure connecting the two sources. Furthermore, spectral index measurements indicate lower optical depth within the A2 disk compared to the A1 disk. Our multiwavelength analysis of A1 discovered characteristics such as high dust surface density, substantial dust mass within the disk, and elevated dust temperatures. These findings suggest the presence of large dust grains compared to the ones in the interstellar medium (ISM), greater than 100 microns in size within the region. By employing RADMC-3D, we confirmed that increasing the scale height creates the appearance of an asymmetry in protoplanetary disks. Our findings indicate that a scale height of at least 0.3 (H/R) is necessary to produce this observed asymmetry. Furthermore, while there’s no direct detection of any substructure, our models indicate that some substructure, such as a small gap, must be present. However, reproducing the intensity profile along the major and minor axes necessitates considering other processes that may be occurring within the IRAS4A1 disk. Conclusions. The result implies that disk substructures may be masked or obscured by a large scale height in combination with a high degree of flaring in Class 0 disks.  more » « less
Award ID(s):
1910364 2108794
PAR ID:
10542763
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
681
ISSN:
0004-6361
Page Range / eLocation ID:
A82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in Atacama Large Millimeter/submillimeter Array 1.3 and 0.87 mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (σR/Rdisk∼ 0.26) with low contrasts (C< 0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σR/Rdisk∼ 0.08 andCranges from 0 to 1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring–gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage. 
    more » « less
  2. Abstract Detecting planet signatures in protoplanetary disks is fundamental to understanding how and where planets form. In this work, we report dust and gas observational hints of planet formation in the disk around 2MASS J16120668-301027, as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Large Program “AGE-PRO: ALMA survey of Gas Evolution in Protoplanetary disks.” The disk was imaged with the ALMA at Band 6 (1.3 mm) in dust continuum emission and four molecular lines:12CO(J= 2–1),13CO(J= 2–1), C18O(J= 2–1), and H2CO(J= 3(3,0)–2(2,0)). Resolved observations of the dust continuum emission (angular resolution of ∼150 mas, 20 au) show a ring-like structure with a peak at 0.″57 (75 au), a deep gap with a minimum at 0.″24 (31 au), an inner disk, a bridge connecting the inner disk and the outer ring, along with a spiral arm structure, and a tentative detection (to 3σ) of a compact emission at the center of the disk gap, with an estimated dust mass of ∼2.7−12.9 Lunar masses. We also detected a kinematic kink (not coincident with any dust substructure) through several12CO channel maps (angular resolution ∼200 mas, 30 au), located at a radius of ∼0.″875 (115.6 au). After modeling the12CO velocity rotation around the protostar, we identified a purple tentative rotating-like structure at the kink location with a geometry similar to that of the disk. We discuss potential explanations for the dust and gas substructures observed in the disk and their potential connection to signatures of planet formation. 
    more » « less
  3. Abstract We perform visibility fitting to the dust continuum Band 6 1.3 mm data of the 30 protoplanetary disks in the Atacama Large Millimeter/submillimeter Array Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Large Program. We obtain disk geometries, dust-disk radii, and azimuthally symmetric radial profiles of the intensity of the dust continuum emission. We examine the presence of continuum substructures in the AGE-PRO sample by using these radial profiles and their residuals. We detect substructures in 15 out of 30 disks. We report five disks with large (>15 au) inner dust cavities. The Ophiuchus Class I disks show dust-disk substructures in ∼80% of the resolved sources. This evidences the early formation of substructures in protoplanetary disks. A spiral is identified in IRS 63, hinting to gravitational instability in this massive disk. We compare our dust-disk brightness radial profiles with gas-disk brightness radial profiles and discuss colocal substructures in both tracers. In addition, we discuss the evolution of dust-disk radii and substructures across Ophiuchus, Lupus, and Upper Scorpius. We find that disks in Lupus and Upper Scorpius with large inner dust cavities have typical gas-disk masses, suggesting an abundance of dust cavities in these regions. The prevalence of pressure dust traps at later ages is supported by a potential trend with time with more disks with large inner dust cavities (ortransition disks) in Upper Scorpius and the absence of evolution of dust-disk sizes with time in the AGE-PRO sample. We propose this is caused by an evolutionary sequence with a high fraction of protoplanetary disks with inner protoplanets carving dust cavities. 
    more » « less
  4. Abstract While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12COJ= 2–1,13COJ= 2–1, C18OJ= 2–1,H2COJ= 30,3–20,2, and SOJ= 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4Musing C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly. 
    more » « less
  5. Abstract Observations of substructure in protoplanetary disks have largely been limited to the brightest and largest disks, excluding the abundant population of compact disks, which are likely sites of planet formation. Here, we reanalyze ∼0.″1, 1.33 mm Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations of 12 compact protoplanetary disks in the Taurus star-forming region. By fitting visibilities directly, we identify substructures in six of the 12 compact disks. We then compare the substructures identified in the full Taurus sample of 24 disks in single-star systems and the ALMA DSHARP survey, differentiating between compact (Reff,90%< 50 au) and extended (Reff,90%≥50 au) disk sources. We find that substructures are detected at nearly all radii in both small and large disks. Tentatively, we find fewer wide gaps in intermediate-sized disks withReff,90%between 30 and 90 au. We perform a series of planet–disk interaction simulations to constrain the sensitivity of our visibility-fitting approach. Under the assumption of planet–disk interaction, we use the gap widths and common disk parameters to calculate potential planet masses within the Taurus sample. We find that the young planet occurrence rate peaks near Neptune masses, similar to the DSHARP sample. For 0.01MJ/M≲Mp/M*≲0.1MJ/M, the rate is 17.4% ± 8.3%; for 0.1MJ/M≲Mp/M*≲1MJ/M, it is 27.8% ± 8.3%. Both of them are consistent with microlensing surveys. For gas giants more massive than 5MJ, the occurrence rate is 4.2% ± 4.2%, consistent with direct imaging surveys. 
    more » « less