skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 1, 2025

Title: Caching on the Sky: A Multiagent Federated Reinforcement Learning Approach for UAV-Assisted Edge Caching
Award ID(s):
2318664
PAR ID:
10542784
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE Internet of Things Journal
Date Published:
Journal Name:
IEEE Internet of Things Journal
Volume:
11
Issue:
17
ISSN:
2372-2541
Page Range / eLocation ID:
28213 to 28226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
    We study fair content allocation strategies in caching networks through a utility-driven framework, where each request achieves a utility of its caching gain rate. The resulting problem is NP-hard. Submodularity allows us to devise a deterministic allocation strategy with an optimality guarantee factor arbitrarily close to 1-1/e. When 0 < α ≤ 1, we further propose a randomized strategy that attains an improved optimality guarantee, (1 - 1/e)1-α, in expectation. Through extensive simulations over synthetic and real-world network topologies, we evaluate the performance of our proposed strategies and discuss the effect of fairness. 
    more » « less
  3. null (Ed.)
    Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the ``regret'' in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this ``caching bandit'' using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations. 
    more » « less
  4. Caches are at the heart of latency-sensitive systems. In this paper, we identify a growing challenge for the design of latency-minimizing caches called delayed hits. Delayed hits occur at high throughput, when multiple requests to the same object queue up before an outstanding cache miss is resolved. This effect increases latencies beyond the predictions of traditional caching models and simulations; in fact, caching algorithms are designed as if delayed hits simply didn't exist. We show that traditional caching strategies -- even so called 'optimal' algorithms -- can fail to minimize latency in the presence of delayed hits. We design a new, latency-optimal offline caching algorithm called belatedly which reduces average latencies by up to 45% compared to the traditional, hit-rate optimal Belady's algorithm. Using belatedly as our guide, we show that incorporating an object's 'aggregate delay' into online caching heuristics can improve latencies for practical caching systems by up to 40%. We implement a prototype, Minimum-AggregateDelay (mad), within a CDN caching node. Using a CDN production trace and backends deployed in different geographic locations, we show that mad can reduce latencies by 12-18% depending on the backend RTTs. 
    more » « less