skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation Support for Fast and Accurate Large-Scale GPGPU & Accelerator Workloads
In recent years deep neural networks (DNNs) have emerged as an important application domain driving the requirements for future systems. As DNNs get more sophisticated, their compute requirements and the datasets they are trained on continue to grow at a fast rate. For example, Gholami showed that compute in Transformer networks grew 750X over 2 years, while other work projects DNN compute and memory requirements to grow by 1.5X per year. Given their growing requirements and importance, heterogeneous systems often add machine learning (ML) specific features (e.g., TensorCores) to improve their efficiency. However, given ML’s voracious rate of growth and size, there is a growing challenge in performing early-system exploration based on sound simulation methodology. In this work we discuss our efforts to enhance gem5’s support to make these workloads practical to run while retaining accuracy.  more » « less
Award ID(s):
2311889
PAR ID:
10542853
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
3rd Open-Source Computer Architecture Research Workshop (OSCAR)
Date Published:
Subject(s) / Keyword(s):
simulation GPGPU ML gem5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Neural Networks (DNN) have gained tremendous popularity over the last years for several computer vision tasks, including classification and object detection. Such techniques have been able to achieve human-level performance in many tasks and have produced results of unprecedented accuracy. As DNNs have intense computational requirements in the majority of applications, they utilize a cluster of computers or a cutting edge Graphical Processing Unit (GPU), often having excessive power consumption and generating a lot of heat. In many robotics applications the above requirements prove to be a challenge, as there is limited power on-board and heat dissipation is always a problem. In particular in underwater robotics with limited space, the above two requirements have been proven prohibitive. As first of this kind, this paper aims at analyzing and comparing the performance of several state-of-the-art DNNs on different platforms. With a focus on the underwater domain, the capabilities of the Jetson TX2 from NVIDIA and the Neural Compute Stick from Intel are of particular interest. Experiments on standard datasets show how different platforms are usable on an actual robotic system, providing insights on the current state-of-the-art embedded systems. Based on such results, we propose some guidelines in choosing the appropriate platform and network architecture for a robotic system. 
    more » « less
  2. While recent years have witnessed a steady trend of applying Deep Learning (DL) to networking systems, most of the underlying Deep Neural Networks (DNNs) suffer two major limitations. First, they fail to generalize to topologies unseen during training. This lack of generalizability hampers the ability of the DNNs to make good decisions every time the topology of the networking system changes. Second, existing DNNs commonly operate as "blackboxes" that are difficult to interpret by network operators, and hinder their deployment in practice. In this paper, we propose to rely on a recently developed family of graph-based DNNs to address the aforementioned limitations. More specifically, we focus on a network congestion prediction application and apply Graph Attention (GAT) models to make congestion predictions per link using the graph topology and time series of link loads as inputs. Evaluations on three real backbone networks demonstrate the benefits of our proposed approach in terms of prediction accuracy, generalizability, and interpretability. 
    more » « less
  3. null (Ed.)
    Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D 2 NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D 2 2NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D 2 NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task. 
    more » « less
  4. In recent years, machine learning research has largely shifted focus from the cloud to the edge. While the resulting algorithm- and hardware-level optimizations have enabled local execution for the majority of deep neural networks (DNNs) on edge devices, the sheer magnitude of DNNs associated with real-time video detection workloads has forced them to remain relegated to remote execution in the cloud. This problematic when combined with the strict latency requirements that are coupled with these workloads, and imposes a unique set of challenges not directly addressed in prior works. In this work, we design MobiEye, a cloud-based video detection system optimized for deployment in real-time mobile applications. MobiEye is able to achieve up to a 32% reduction in latency when compared to a conventional implementation of video detection system with only a marginal reduction in accuracy. 
    more » « less
  5. Nowadays, AI-based techniques, such as deep neural networks (DNNs), are widely deployed in autonomous systems for complex mission requirements (e.g., motion planning in robotics). However, DNNs-based controllers are typically very complex, and it is very hard to formally verify their correctness, potentially causing severe risks for safety-critical autonomous systems. In this paper, we propose a construction scheme for a so-called Safe-visor architecture to sandbox DNNs-based controllers. Particularly, we consider the construction under a stochastic game framework to provide a system-level safety guarantee which is robust to noises and disturbances. A supervisor is built to check the control inputs provided by a DNNs-based controller and decide whether to accept them. Meanwhile, a safety advisor is running in parallel to provide fallback control inputs in case the DNN-based controller is rejected. We demonstrate the proposed approaches on a quadrotor employing an unverified DNNs-based controller. 
    more » « less