skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Text Augmented Open Knowledge Graph Completion via Pre-Trained Language Models
The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM), exhibiting limited performance and requiring expensive efforts from experts. To this end, we propose TagReal that automatically generates quality query prompts and retrieves support information from large text corpora to probe knowledge from PLM for KG completion. The results show that TagReal achieves state-of-the-art performance on two benchmark datasets. We find that TagReal has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.  more » « less
Award ID(s):
2118329
PAR ID:
10543122
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Rogers, Anna; Boyd-Graber, Jordan; Okazaki, Naoaki
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
11161 to 11180
Format(s):
Medium: X
Location:
Toronto, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model’s performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion. 
    more » « less
  2. Knowledge graph (KG) representation learning aims to encode entities and relations into dense continuous vector spaces such that knowledge contained in a dataset could be consistently represented. Dense embeddings trained from KG datasets benefit a variety of downstream tasks such as KG completion and link prediction. However, existing KG embedding methods fell short to provide a systematic solution for the global consistency of knowledge representation. We developed a mathematical language for KG based on an observation of their inherent algebraic structure, which we termed as Knowledgebra. By analyzing five distinct algebraic properties, we proved that the semigroup is the most reasonable algebraic structure for the relation embedding of a general knowledge graph. We implemented an instantiation model, SemE, using simple matrix semigroups, which exhibits state-of-the-art performance on standard datasets. Moreover, we proposed a regularization-based method to integrate chain-like logic rules derived from human knowledge into embedding training, which further demonstrates the power of the developed language. As far as we know, by applying abstract algebra in statistical learning, this work develops the first formal language for general knowledge graphs, and also sheds light on the problem of neural-symbolic integration from an algebraic perspective. 
    more » « less
  3. Knowledge graphs (KGs) capture knowledge in the form of head– relation–tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500× larger than previously considered KGs. The key to SMORE’s runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU–GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2× with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings. 
    more » « less
  4. Representing knowledge graphs (KGs) by learning embeddings for entities and relations has led to accurate models for existing KG completion benchmarks. However, due to the open-world assumption of existing KGs, evaluation of KG completion uses ranking metrics and triple classification with negative samples, and is thus unable to directly assess models on the goals of the task: completion. In this paper, we first study the shortcomings of these evaluation metrics. Specifically, we demonstrate that these metrics (1) are unreliable for estimating how calibrated the models are, (2) make strong assumptions that are often violated, and 3) do not sufficiently, and consistently, differentiate embedding methods from each other, or from simpler approaches. To address these issues, we gather a semi-complete KG referred as YAGO3-TC, using a random subgraph from the test and validation data of YAGO3-10, which enables us to compute accurate triple classification accuracy on this data. Conducting thorough experiments on existing models, we provide new insights and directions for the KG completion research. Along with the dataset and the open source implementation of the models, we also provide a leaderboard for knowledge graph completion that consists of a hidden, and growing, test set, available at https://pouyapez.github.io/yago3-tc/. 
    more » « less
  5. Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods. 
    more » « less