skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The MOSDEF survey: properties of warm ionized outflows at z  = 1.4–3.8
ABSTRACT We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate the kinematics and energetics of ionized gas outflows. Using a sample of 598 star-forming galaxies at redshift 1.4 < z < 3.8, we decompose [O iii] and $$\rm {H}\,\alpha$$ emission lines into narrow and broad components, finding significant detections of broad components in 10 per cent of the sample. The ionized outflow velocity from individual galaxies appears independent of galaxy properties, such as stellar mass, star formation rate (SFR), and SFR surface density (ΣSFR). Adopting a simple outflow model, we estimate the mass-, energy-, and momentum-loading factors of the ionized outflows, finding modest values with averages of 0.33, 0.04, and 0.22, respectively. The larger momentum- than energy-loading factors, for the adopted physical parameters, imply that these ionized outflows are primarily momentum driven. We further find a marginal correlation (2.5σ) between the mass-loading factor and stellar mass in agreement with predictions by simulations, scaling as ηm$$\propto M_{\star }^{-0.45}$$. This shallow scaling relation is consistent with these ionized outflows being driven by a combination of mechanical energy generated by supernovae explosions and radiation pressure acting on dusty material. In a majority of galaxies, the outflowing material does not appear to have sufficient velocity to escape the gravitational potential of their host, likely recycling back at later times. Together, these results suggest that the ionized outflows traced by nebular emission lines are negligible, with the bulk of mass and energy carried out in other gaseous phases.  more » « less
Award ID(s):
2009313
PAR ID:
10543300
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
531
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4560 to 4576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the multi-phase structure of gas flows in galaxies. We study 80 galaxies during the epoch of peak star formation (1.4≤z≤2.7) using data from Keck/LRIS and VLT/KMOS. Our analysis provides a simultaneous probe of outflows using UV emission and absorption features and Hα emission. With this unprecedented data set, we examine the properties of gas flows estimated from LRIS and KMOS in relation to other galaxy properties, such as star formation rate (SFR), star formation rate surface density (ΣSFR), stellar mass (M∗), and main sequence offset (ΔMS). We find no strong correlations between outflow velocity measured from rest-UV lines centroids and galaxy properties. However, we find that galaxies with detected outflows show higher averages in SFR, ΣSFR, and ΔMS than those lacking outflow detections, indicating a connection between outflow and galaxy properties. Furthermore, we find a lower average outflow velocity than previously reported, suggesting greater absorption at the systemic redshift of the galaxy. Finally, we detect outflows in 49% of our LRIS sample and 30% in the KMOS sample, and find no significant correlation between outflow detection and inclination. These results may indicate that outflows are not collimated and that Hα outflows have a lower covering fraction than low-ionization interstellar absorption lines. Additionally, these tracers may be sensitive to different physical scales of outflow activity. A larger sample size with a wider dynamic range in galaxy properties is needed to further test this picture. 
    more » « less
  2. Abstract We investigate the multiphase structure of gas flows in galaxies. We study 80 galaxies during the epoch of peak star formation (1.4 ≤z≤ 2.7) using data from the Keck/Low-Resolution Imaging Spectrometer (LRIS) and the Very Large Telescope/K-Band Multi-Object Spectrograph (KMOS). Our analysis provides a simultaneous probe of outflows using UV emission and absorption features and Hαemission. With this unprecedented data set, we examine the properties of gas flows estimated from LRIS and KMOS in relation to other galaxy properties, such as star formation rate (SFR), SFR surface density (ΣSFR), stellar mass (M*), and main-sequence offset (ΔMS). We find no strong correlations between outflow velocity measured from rest-UV line centroids and galaxy properties. However, we find that galaxies with detected outflows show higher averages in SFR, ΣSFR, and ΔMS than those lacking outflow detections, indicating a connection between outflow and galaxy properties. Furthermore, we find a lower average outflow velocity than previously reported, suggesting greater absorption at the systemic redshift of the galaxy. Finally, we detect outflows in 49% of our LRIS sample and 30% in the KMOS sample and find no significant correlation between outflow detection and inclination. These results may indicate that outflows are not collimated and that Hαoutflows have a lower covering fraction than low-ionization interstellar absorption lines. Additionally, these tracers may be sensitive to different physical scales of outflow activity. A larger sample size with a wider dynamic range in galaxy properties is needed to further test this picture. 
    more » « less
  3. ABSTRACT Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($$L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007. 
    more » « less
  4. Abstract We compare 500 pc scale, resolved observations of ionized and molecular gas for the z ∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux ( Σ ̇ out ) and star formation rate surface density (Σ SFR ), Σ ̇ out ∝ Σ SFR 1.06 ± 0.10 , and a strong correlation between Σ ̇ out and the gas depletion time, such that Σ ̇ out ∝ t dep − 1.1 ± 0.06 . Moreover, we find these outflows are so-called breakout outflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest Σ SFR in IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies. 
    more » « less
  5. ABSTRACT We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg ii and Fe ii absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 – 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ∼ −161 to −240 km s−1), and mass outflow rates ($$\dot{M}_{out} \sim 183$$ – 527 $${\rm M}_{\odot }\, \mathrm{yr}^{-1}$$). The outflow velocities from different regions of the same galaxy vary by 80 km s−1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5–25 kpc2), we find that outflow velocities vary between ∼ −120 and −242 km s−1, and the mass outflow rates vary between ∼37 and 254 $${\rm M}_{\odot }\, \mathrm{yr}^{-1}$$. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution. 
    more » « less