skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular layer deposition of polyhydroquinone thin films for Li‐ion battery applications
Abstract Many next‐generation materials for Li‐ion batteries are limited by material instabilities. To stabilize these materials, ultrathin, protective coatings are needed that conduct both lithium ions and electrons. Here, we demonstrate a hybrid chemistry combining molecular layer deposition (MLD) of trimethylaluminum (TMA) and p‐hydroquinone (HQ) with oxidative molecular layer deposition (oMLD) of molybdenum pentachloride (MoCl5) and HQ to enable vapor‐phase molecular layer growth of poly(p‐hydroquinone) (PHQ)—a mixed electron and lithium ion conducting polymer. We employ quartz crystal microbalance (QCM) studies to understand the chemical mechanism and demonstrate controlled linear growth with a 0.5 nm/cycle growth rate. Spectroscopic characterization indicates that this hybrid MLD/oMLD chemistry polymerizes surface HQ monomers from the TMA‐HQ chemistry to produce PHQ. The polymerization to PHQ improves air stability over MLD TMA‐HQ films without crosslinking. Electrochemical measurements on hybrid MLD/oMLD films indicate electronic conductivity of ~10−9 S/cm and a Li‐ion conductivity of ~10−4 S/cm. While these coatings show promise for Li‐ion battery applications, this work focuses on establishing the coating chemistry and future studies are needed to examine the stability, structure, and cycling performance of these coatings in full Li‐ion cells.  more » « less
Award ID(s):
2219060
PAR ID:
10543432
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
70
Issue:
12
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability. 
    more » « less
  2. The shuttling of polysulfides and uncontrollable growth of lithium dendrites remain the most critical obstacles deteriorating the performance and safety of lithium–sulfur batteries. The separator plays a key role in molecule diffusion and ion transport kinetics; thus, endowing the separator with functions to address the two abovementioned issues is an urgent need. Herein, a protein-based, low-resistance Janus nanofabric is designed and fabricated for simultaneously trapping polysulfides and stabilizing lithium metal. The Janus nanofabric is achieved via combining two functional nanofabric layers, a gelatin-coated conductive nanofabric (G@CNF) as a polysulfide-blocking layer and a gelatin nanofabric (G-nanofabric) as an ion-regulating layer, into a heterostructure. The gelatin coating of G@CNF effectively enhances the polysulfide-trapping ability owing to strong gelatin–polysulfide interactions. The G-nanofabric with exceptional wettability, high ionic conductivity (4.9 × 10 −3 S cm −1 ) and a high lithium-ion transference number (0.73) helps stabilize ion deposition and thus suppresses the growth of lithium dendrites. As a result, a Li/Li symmetric cell with the G-nanofabric delivers ultra-long cycle life over 1000 h with very stable performance. Benefiting from the synergistic effect of the two functional layers of the Janus nanofabric, the resulting Li–S batteries demonstrate excellent capacity, rate performance and cycling stability ( e.g. initial discharge capacity of 890 mA h g −1 with a decay rate of 0.117% up to 300 cycles at 0.5 A g −1 ). 
    more » « less
  3. Abstract Practical applications of lithium metal batteries are often limited by low cycling efficiencies and uncontrolled lithium dendrite growth caused by unstable and heterogeneous lithium‐electrolyte interfaces. To address this issue, a calix[4]pyrrole‐based wavy covalent organic framework (WCOF) is developed that acts as a protective layer to suppress Li dendrite growth and reduce side reactions on the Li anode. The presentWCOFis porous and contains calix[4]pyrrole units acting as “molecular traps” that allow efficient PF6anion capture while allowing for uniform Li+diffusion. This provides structurally stable artificial protective layers that permit high Li+transference numbers. The resulting solid electrolyte interphases permit ultralong‐term stable cycling at a current density of 1 mA cm−2and reversible lithium plating/stripping (over 2500 h) at an areal capacity of 2 mAh cm−2. The protected anodes of this study also demonstrated excellent cell stability through 260 cycles when paired with high‐voltage cathodes (NCM811 with high mass loading: 20 mg cm−2). 
    more » « less
  4. Abstract This study presents a novel polymer‐in‐salt (PIS) zwitterionic polyurethane‐based solid polymer electrolyte (zPU‐SPE) that offers high ionic conductivity, strong interaction with electrodes, and excellent mechanical and electrochemical stabilities, making it promising for high‐performance all solid‐state lithium batteries (ASSLBs). The zPU‐SPE exhibits remarkable lithium‐ion (Li+) conductivity (3.7 × 10⁻⁴ S cm−1at 25 °C), enabled by exceptionally high salt loading of up to 90 wt.% (12.6 molar ratio of Li salt to polymer unit) without phase separation. It addresses the limitations of conventional SPEs by combining high ionic conductivity with a Li+transference number of 0.44, achieved through the incorporation of zwitterionic groups that enhance ion dissociation and transport. The high surface energy (338.4 J m2) and elasticity ensure excellent adhesion to Li anodes, reducing interfacial resistance and ensuring uniform Li+flux. When tested in Li||zPU||LiFePO₄ and Li||zPU||S/C cells, the zPU‐SPE demonstrated remarkable cycling stability, retaining 76% capacity after 2000 cycles with the LiFePO4cathode, and achieving 84% capacity retention after 300 cycles with the S/C cathode. Molecular simulations and a range of experimental characterizations confirm the superior structural organization of the zPU matrix, contributing to its outstanding electrochemical performance. The findings strongly suggest that zPU‐SPE is a promising candidate for next‐generation ASSLBs. 
    more » « less
  5. This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI via a simple melting method. The molecular crystal has both Li+ and I- channels and can be either a Li+ or I- conductor. In the stoichiomnetric crystal (Adpn)2LiI, the Li+ ions interact only with four C≡N groups of Adpn while the I- ions are uncoordinated. Ab initio calculations indicate that the activation energy for ion hopping is less for the I- (Ea = 60 kJ/mol) than for the Li+ (Ea = 93 kJ/mol) ions, and is predominantly an I- conductor, with a lithium-ion transference number (t_Li^+) of t_Li^+ = 0.15, no lithium plating/stripping observed in the cyclic voltammograms (CVs), and a conductivity of σ = 10-4 S/cm at 30 oC. With the addition of excess adiponitrile, which resides in the grain boundaries between the crystal grains, the contribution of Li+ ions to the conductivity increases, so that for the nonstoichiometric molecular crystal (Adpn)3LiI, Li↔ Li^+ redox reactions are observed in the CVs, t_Li^+ = 0.63, conductivity increases to σ = 10-3 S/cm 30 0C, the voltage stability window is 4V, and it is thermally stable to 130 o.C, showcasing the potential of this electrolyte for advanced solid-state Li-I battery applications. The solid (Adpn)3LiI minimizes migration of polyiodides, inhibiting the “shuttle” effect. 
    more » « less