skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stellar Loci. VII. Photometric Metallicities of 5 Million FGK Stars Based on GALEX GR6+7 AIS and Gaia EDR3
Abstract We combine photometric data from GALEX GR6+7 All-Sky Imaging Survey and Gaia Early Data Release 3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs (0.4 < BP − RP < 1.6) and giants (0.6 < BP − RP < 1.6). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationship between stellar loci (near-ultraviolet (NUV)−BP versus BP − RP colors), metallicity, andMG. For a given BP − RP color, a 1 dex change in [Fe/H] corresponds to an approximately 1 magnitude change in NUV − BP color for solar-type stars. These relationships are employed to estimate metallicities based on NUV − BP, BP − RP, andMG. Thanks to the strong metallicity dependence in the GALEX NUV band, our models enable a typical photometric-metallicity precision of approximatelyσ[Fe/H]= 0.11 dex for dwarfs andσ[Fe/H]= 0.17 dex for giants, with an effective metallicity range extending down to [Fe/H] = −3.0 for dwarfs and [Fe/H] = −4.0 for giants. We also find that the NUV-band-based photometric-metallicity estimate is not as strongly affected by carbon enhancement as previous photometric techniques. With the GALEX and Gaia data, we have estimated metallicities for about 5 million stars across almost the entire sky, including approximately 4.5 million dwarfs and 0.5 million giants. This work demonstrates the potential of the NUV band for estimating photometric metallicities, and sets the groundwork for utilizing the NUV data from space telescopes such as the upcoming Chinese Space Station Telescope.  more » « less
Award ID(s):
1927130
PAR ID:
10543456
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ApJSS
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We apply the stellar locus method to synthetic (BP–RP)XPSPand (BP–G)XPSPcolors derived from corrected Gaia BP/RP (XP) spectra to obtain precise estimates of metallicity for about 100 million stars in the Milky Way (34 million giants in the color range 0.6 < (BP–RP)0 < 1.75 and 65 million dwarfs in the color range 0.2 < (BP–RP)0 < 1.5). The submillimagnitude precision of the derived synthetic stellar colors enables estimates of metallicity for stars as low as [Fe/H] ∼ −4. Multiple validation tests indicate that the typical metallicity precision is between 0.05 and 0.1 dex for both dwarfs and giants at [Fe/H] = 0, as faint asG ∼ 16, and decreases to 0.15–0.25 dex at [Fe/H] = −2.0. For −4.0 < [Fe/H] < −3.0, the typical metallicity precision decreases to on the order of 0.4–0.5 dex, based on the results from the reference sample. Our achieved precision is comparable to or better than previous efforts using the entire XP spectra and about 3 times better than our previous work based on Gaia EDR3 colors. This opens up new opportunities for investigations of stellar populations, the formation and chemical evolution of the Milky Way, the chemistry of stars and star clusters, and the identification of candidate stars for subsequent high-resolution spectroscopic follow-up. The catalog is publicly available at doi:10.12149/101548. 
    more » « less
  2. Abstract We present a catalog of stellar parameters (effective temperatureTeff, surface gravity log g , age, and metallicity [Fe/H]) and elemental-abundance ratios ([C/Fe], [Mg/Fe], and [α/Fe]) for some five million stars (4.5 million dwarfs and 0.5 million giant stars) in the Milky Way, based on stellar colors from the Javalambre Photometric Local Universe Survey (J-PLUS) DR3 and Gaia EDR3. These estimates are obtained through the construction of a large spectroscopic training set with parameters and abundances adjusted to uniform scales, and trained with a kernel principal component analysis. Owing to the seven narrow/medium-band filters employed by J-PLUS, we obtain precisions in the abundance estimates that are as good as or better than those derived from medium-resolution spectroscopy for stars covering a wide range of the parameter space: 0.10–0.20 dex for [Fe/H] and [C/Fe], and 0.05 dex for [Mg/Fe] and [α/Fe]. Moreover, systematic errors due to the influence of molecular carbon bands on previous photometric-metallicity estimates (which only included two narrow/medium-band blue filters) have now been removed, resulting in photometric-metallicity estimates down to [Fe/H] ∼ −4.0, with typical uncertainties of 0.40 dex and 0.25 dex for dwarfs and giants, respectively. This large photometric sample should prove useful for the exploration of the assembly and chemical-evolution history of our Galaxy. 
    more » « less
  3. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less
  4. Abstract Age is the most difficult fundamental stellar parameter to infer for isolated stars. While isochrone-based ages are in general imprecise for both main-sequence dwarfs and red giants, precise isochrone-based ages can be obtained for stars on the subgiant branch transitioning from core to shell hydrogen burning. We synthesize Gaia Data Release 3–based distance inferences, multiwavelength photometry from the ultraviolet to the mid-infrared, and three-dimensional extinction maps to construct a sample of 289,759 solar-metallicity stars amenable to accurate, precise, and physically self-consistent age inferences. Using subgiants in the solar-metallicity open clusters NGC 2682 (i.e., M67) and NGC 188, we show that our approach yields accurate and physically self-consistent ages and metallicities with median statistical precisions of 8% and 0.06 dex, respectively. The inclusion of systematic uncertainties resulting from nonsingle or variable stars results in age and metallicity precisions of 9% and 0.12 dex, respectively. We supplement this solar-metallicity sample with an additional 112,062 metal-poor subgiants, including over 3000 stars with [Fe/H] ≲ −1.50, 7% age precisions, and apparent GaiaG-band magnitudesG< 14. We further demonstrate that our inferred metallicities agree with those produced by multiplexed spectroscopic surveys. As an example of the scientific potential of this catalog, we show that the solar neighborhood star formation history has three components at ([Fe/H],τ/Gyr) ≈ (+0.0, 4), (+0.2, 7), and a roughly linear sequence in age–metallicity space beginning at ([Fe/H],τ/Gyr) ≈ (+0.2, 7) and extending to (−0.5, 13). Our analyses indicate that the solar neighborhood includes stars on disk-like orbits even at the oldest ages and lowest metallicities accessible by our samples. 
    more » « less
  5. Abstract Utilizing Zwicky Transient Facility (ZTF) data and existing RR Lyrae stars (RRLs) catalogs, this study achieves the first calibration of theP−ϕ31−R21− [Fe/H] andP−ϕ31−A2−A1− [Fe/H] relations in the ZTF photometric system for RRab and RRc stars. We also recalibrate the period–absolute magnitude–metallicity (PMZ) and period–Wesenheit–metallicity (PWZ) relations in the ZTFgribands for RRab and RRc stars. Based on nearly 4100 stars with precise measurements ofP,ϕ31,A2, andA1, and available spectroscopic metallicity estimates, the photometric metallicity relations exhibit strong internal consistency across different bands, supporting the use of a weighted averaging method for the final estimates. The photometric metallicity estimates of globular clusters based on RR Lyrae members also show excellent agreement with high-resolution spectroscopic measurements, with a typical scatter of 0.15 dex for RRab stars and 0.14 dex for RRc stars, respectively. Using hundreds of local RRLs with newly derived photometric metallicities and precise Gaia Data Release 3 parallaxes, we establish the PMZ and PWZ relations in multiple bands. Validation with globular cluster RR Lyrae members reveals typical distance errors of 3.1% and 3.0% for the PMZ relations, and 3.1% and 2.6% for the PWZ relations for RRab and RRc stars, respectively. Compared to PMZ relations, the PWZ relations are tighter and almost unbiased, making them the recommended choice for distance calculations. We present a catalog of 73,795 RRLs with precise photometric metallicities; over 95% of them have accurate distance measurements. Compared to Gaia DR3, approximately 25,000 RRLs have precise photometric metallicities and distances derived for the first time. 
    more » « less