This paper presents a variational Bayesian inference Neural Network (BNN) approach to quantify uncertainties in matrix function estimation for the state-space linear parameter-varying (LPV) model identification problem using only inputs/outputs data. The proposed method simultaneously estimates states and posteriors of matrix functions given data. In particular, states are estimated by reaching a consensus between an estimator based on past system trajectory and an estimator by recurrent equations of states; posteriors are approximated by minimizing the Kullback–Leibler (KL) divergence between the parameterized posterior distribution and the true posterior of the LPV model parameters. Furthermore, techniques such as transfer learning are explored in this work to reduce computational cost and prevent convergence failure of Bayesian inference. The proposed data-driven method is validated using experimental data for identification of a control-oriented reactivity controlled compression ignition (RCCI) engine model.
more »
« less
This content will become publicly available on May 2, 2025
Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow
Motivated by the computation of the non-parametric maximum likelihood estimator (NPMLE) and the Bayesian posterior in statistics, this paper explores the problem of convex optimization over the space of all probability distributions. We introduce an implicit scheme, called the implicit KL proximal descent (IKLPD) algorithm, for discretizing a continuous-time gradient flow relative to the KullbackLeibler divergence for minimizing a convex target functional. We show that IKLPD converges to a global optimum at a polynomial rate from any initialization; moreover, if the objective functional is strongly convex relative to the KL divergence, for example, when the target functional itself is a KL divergence as in the context of Bayesian posterior computation, IKLPD exhibits globally exponential convergence. Computationally, we propose a numerical method based on normalizing flow to realize IKLPD. Conversely, our numerical method can also be viewed as a new approach that sequentially trains a normalizing flow for minimizing a convex functional with a strong theoretical guarantee.
more »
« less
- Award ID(s):
- 2210717
- PAR ID:
- 10543512
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nguyen, XuanLong (Ed.)We study the asymptotic consistency properties of α-Rényi approximate posteriors, a class of variational Bayesian methods that approximate an intractable Bayesian posterior with a member of a tractable family of distributions, the member chosen to minimize the α-Rényi divergence from the true posterior. Unique to our work is that we consider settings with α > 1, resulting in approximations that upperbound the log-likelihood, and consequently have wider spread than traditional variational approaches that minimize the Kullback-Liebler (KL) divergence from the posterior. Our primary result identifies sufficient conditions under which consistency holds, centering around the existence of a ‘good’ sequence of distributions in the approximating family that possesses, among other properties, the right rate of convergence to a limit distribution. We further characterize the good sequence by demonstrating that a sequence of distributions that converges too quickly cannot be a good sequence. We also extend our analysis to the setting where α equals one, corresponding to the minimizer of the reverse KL divergence, and to models with local latent variables. We also illustrate the existence of good sequence with a number of examples. Our results complement a growing body of work focused on the frequentist properties of variational Bayesian methods.more » « less
-
A loss function measures the discrepancy between the true values (observations) and their estimated fits, for a given instance of data. A loss function is said to be proper (unbiased, Fisher consistent) if the fits are defined over a unit simplex, and the minimizer of the expected loss is the true underlying probability of the data. Typical examples are the zero-one loss, the quadratic loss and the Bernoulli log-likelihood loss (log-loss). In this work we show that for binary classification problems, the divergence associated with smooth, proper and convex loss functions is bounded from above by the Kullback-Leibler (KL) divergence, up to a multiplicative normalization constant. It implies that by minimizing the log-loss (associated with the KL divergence), we minimize an upper bound to any choice of loss functions from this set. This property justifies the broad use of log-loss in regression, decision trees, deep neural networks and many other applications. In addition, we show that the KL divergence bounds from above any separable Bregman divergence that is convex in its second argument (up to a multiplicative normalization constant). This result introduces a new set of divergence inequalities, similar to the well-known Pinsker inequality.more » « less
-
III, H.D.; Singh, A. (Ed.)We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods.more » « less
-
Fast inference of numerical model parameters from data is an important prerequisite to generate predictive models for a wide range of applications. Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive. New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space, and rely on gradient-based optimization instead of sampling, providing a more efficient approach for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating an expensive likelihood can be mitigated by replacing the true model with an offline trained surrogate model, such as neural networks. However, this approach might generate significant bias when the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and surrogate model parameters. We also propose an efficient sample weighting scheme for surrogate model training that preserves global accuracy while effectively capturing high posterior density regions. We demonstrate the inferential and computational superiority of NoFAS against various benchmarks, including cases where the underlying model lacks identifiability. The source code and numerical experiments used for this study are available at https://github.com/cedricwangyu/NoFAS.more » « less