skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2210717

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this goal, we study the non-asymptotic properties of MF inference that allows latent variables and model misspecification. Concretely, we show a Bernstein–von Mises (BvM) theorem for the variational distribution from MF under possible model misspecification, which implies the distributional convergence of MF variational approximation to a normal distribution centring at the maximal likelihood estimator. Motivated by the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the commonly used Bayesian information criterion (BIC) as the sample size tends to infinity. Compared to BIC, ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due to a better dimension dependence and full incorporation of the prior information. Moreover, we show the geometric convergence of the coordinate ascent variational inference algorithm, which provides a practical guidance on how many iterations one typically needs to run when approximating the ELBO. These findings demonstrate that variational inference is capable of providing a computationally efficient alternative to conventional approaches in tasks beyond obtaining point estimates. 
    more » « less
  2. Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Motivated by the computation of the non-parametric maximum likelihood estimator (NPMLE) and the Bayesian posterior in statistics, this paper explores the problem of convex optimization over the space of all probability distributions. We introduce an implicit scheme, called the implicit KL proximal descent (IKLPD) algorithm, for discretizing a continuous-time gradient flow relative to the KullbackLeibler divergence for minimizing a convex target functional. We show that IKLPD converges to a global optimum at a polynomial rate from any initialization; moreover, if the objective functional is strongly convex relative to the KL divergence, for example, when the target functional itself is a KL divergence as in the context of Bayesian posterior computation, IKLPD exhibits globally exponential convergence. Computationally, we propose a numerical method based on normalizing flow to realize IKLPD. Conversely, our numerical method can also be viewed as a new approach that sequentially trains a normalizing flow for minimizing a convex functional with a strong theoretical guarantee. 
    more » « less
    Free, publicly-accessible full text available May 2, 2025
  4. Empirical studies have demonstrated the effectiveness of (score-based) diffusion models in generating high-dimensional data, such as texts and images, which typically exhibit a low-dimensional manifold nature. These empirical successes raise the theoretical question of whether score-based diffusion models can optimally adapt to low-dimensional manifold structures. While recent work has validated the minimax optimality of diffusion models when the target distribution admits a smooth density with respect to the Lebesgue measure of the ambient data space, these findings do not fully account for the ability of diffusion models in avoiding the the curse of dimensionality when estimating high-dimensional distributions. This work considers two common classes of diffusion models: Langevin diffusion and forward-backward diffusion. We show that both models can adapt to the intrinsic manifold structure by showing that the convergence rate of the inducing distribution estimator depends only on the intrinsic dimension of the data. Moreover, our considered estimator does not require knowing or explicitly estimating the manifold. We also demonstrate that the forward-backward diffusion can achieve the minimax optimal rate under the Wasserstein metric when the target distribution possesses a smooth density with respect to the volume measure of the low-dimensional manifold. 
    more » « less
    Free, publicly-accessible full text available May 2, 2025
  5. In this paper, we examine the computational complexity of sampling from a Bayesian posterior (or pseudo-posterior) using the Metropolis-adjusted Langevin algorithm (MALA). MALA first employs a discrete-time Langevin SDE to propose a new state, and then adjusts the proposed state using Metropolis-Hastings rejection. Most existing theoretical analyses of MALA rely on the smoothness and strong log-concavity properties of the target distribution, which are often lacking in practical Bayesian problems. Our analysis hinges on statistical large sample theory, which constrains the deviation of the Bayesian posterior from being smooth and log-concave in a very specific way. In particular, we introduce a new technique for bounding the mixing time of a Markov chain with a continuous state space via the s-conductance profile, offering improvements over existing techniques in several aspects. By employing this new technique, we establish the optimal parameter dimension dependence of d^1/3 and condition number dependence of κ in the non-asymptotic mixing time upper bound for MALA after the burn-in period, under a standard Bayesian setting where the target posterior distribution is close to a d-dimensional Gaussian distribution with a covariance matrix having a condition number κ. We also prove a matching mixing time lower bound for sampling from a multivariate Gaussian via MALA to complement the upper bound. 
    more » « less
    Free, publicly-accessible full text available April 24, 2025