skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Computational Complexity of Metropolis-Adjusted Langevin Algorithms for Bayesian Posterior Sampling
In this paper, we examine the computational complexity of sampling from a Bayesian posterior (or pseudo-posterior) using the Metropolis-adjusted Langevin algorithm (MALA). MALA first employs a discrete-time Langevin SDE to propose a new state, and then adjusts the proposed state using Metropolis-Hastings rejection. Most existing theoretical analyses of MALA rely on the smoothness and strong log-concavity properties of the target distribution, which are often lacking in practical Bayesian problems. Our analysis hinges on statistical large sample theory, which constrains the deviation of the Bayesian posterior from being smooth and log-concave in a very specific way. In particular, we introduce a new technique for bounding the mixing time of a Markov chain with a continuous state space via the s-conductance profile, offering improvements over existing techniques in several aspects. By employing this new technique, we establish the optimal parameter dimension dependence of d^1/3 and condition number dependence of κ in the non-asymptotic mixing time upper bound for MALA after the burn-in period, under a standard Bayesian setting where the target posterior distribution is close to a d-dimensional Gaussian distribution with a covariance matrix having a condition number κ. We also prove a matching mixing time lower bound for sampling from a multivariate Gaussian via MALA to complement the upper bound.  more » « less
Award ID(s):
2210717
PAR ID:
10543513
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Machine Learning Research
Date Published:
Journal Name:
Journal of machine learning research
ISSN:
1532-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the log-posterior distribution, SGLD methods generate samples from the distribution through performing as a thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable perturbation. Even when the density is not known, existing solutions still can first learn the kernel density models from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations from the spectral domain of a given dataset. Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian distribution with Laplacian prior, then draw new sparse representation from the dataset through performing SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of RMLD beyond baseline methods. 
    more » « less
  2. Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized. 
    more » « less
  3. The technique of modifying the geometry of a problem from Euclidean to Hessian metric has proved to be quite effective in optimization, and has been the subject of study for sampling. The Mirror Langevin Diffusion (MLD) is a sampling analogue of mirror flow in continuous time, and it has nice convergence properties under log-Sobolev or Poincare inequalities relative to the Hessian metric. In discrete time, a simple discretization of MLD is the Mirror Langevin Algorithm (MLA), which was shown to have a biased convergence guarantee with a non-vanishing bias term (does not go to zero as step size goes to zero). This raised the question of whether we need a better analysis or a better discretization to achieve a vanishing bias. Here we study the Mirror Langevin Algorithm and show it indeed has a vanishing bias. We apply mean-square analysis to show the mixing time bound for MLA under the modified self-concordance condition. 
    more » « less
  4. Chiappa, Silvia; Calandra, Roberto (Ed.)
    Langevin Monte Carlo (LMC) is an iterative algorithm used to generate samples from a distribution that is known only up to a normalizing constant. The nonasymptotic dependence of its mixing time on the dimension and target accuracy is understood mainly in the setting of smooth (gradient-Lipschitz) log-densities, a serious limitation for applications in machine learning. In this paper, we remove this limitation, providing polynomial-time convergence guarantees for a variant of LMC in the setting of nonsmooth log-concave distributions. At a high level, our results follow by leveraging the implicit smoothing of the log-density that comes from a small Gaussian perturbation that we add to the iterates of the algorithm and controlling the bias and variance that are induced by this perturbation. 
    more » « less
  5. We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of $$\tilde{O}(d^{3/2}H^{3/2}\sqrt{T})$$, where $$d$$ is the dimension of the feature mapping, $$H$$ is the planning horizon, and $$T$$ is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.\footnote{Our code is available at \url{https://github.com/hmishfaq/LMC-LSVI}} 
    more » « less