skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual Test Beds for Image-Based Control Simulations Using Blender
Process systems engineering research often utilizes virtual testbeds consisting of physicsbased process models. As machine learning and image processing become more relevant sensing frameworks for control, it becomes important to address how process systems engineers can research the development of control and analysis frameworks that utilize images of physical processes. One method for achieving this is to develop experimental systems; another is to use software that integrates the visualization of systems, as well as modeling of the physics, such as three-dimensional graphics software. The prior work in our group analyzed image-based control for the small-scale example of level in a tank and hinted at some of its potential extensions, using Blender as the graphics software and programming the physics of the tank level via the Python programming interface. The present work focuses on exploring more practical applications of image-based control. Specifically, in this work, we first utilize Blender to demonstrate how a process like zinc flotation, where images of the froth can play a key role in assessing the quality of the process, can be modeled in graphics software through the integration of visualization and programming of the process physics. Then, we demonstrate the use of Blender for testing image-based controllers applied to two other processes: (1) control of the stochastic motion of a nanorod as a precursor simulation toward image-based control of colloidal self-assembly using a virtual testbed; and (2) controller updates based on environment recognition to modify the controller behavior in the presence of different levels of sunlight to reduce the impacts of environmental disturbances on the controller performance. Throughout, we discuss both the setup used in Blender for these systems, as well as some of the features when utilizing Blender for such simulations, including highlighting cases where non-physical parameters of the graphics software would need to be assumed or tuned to the needs of a given process for the testbed simulation. These studies highlight benefits and limitations of this framework as a testbed for image-based controllers and discuss how it can be used to derive insights on image-based control functionality without the development of an experimental testbed.  more » « less
Award ID(s):
1932026 1839675
PAR ID:
10543789
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Processes
Volume:
12
Issue:
2
ISSN:
2227-9717
Page Range / eLocation ID:
279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Within an Industry 4.0 framework, a variety of new considerations are of increasing importance, such as securing processes against cyberattacks on the control systems or utilizing advances in image processing for image-based control. These new technologies impact relationships between process design and control. In this work, we discuss some of these potential relationships, beginning with a discussion of side channel attacks and what they suggest about ways of evaluating plant design and instrumentation selection, along with controller and security schemes, particularly as more data is collected and there is a move toward an industrial Internet of Things. Next, we highlight how the 3D computer graphics software tool set Blender can be utilized to analyze a variety of considerations related to ensuring safety of plant operation and facilitating the design of assemblies with image-based sensing. 
    more » « less
  2. We have developed a series of course-based undergraduate research experiences for students integrated into course curriculum centered around the use of 3D visualization and virtual reality for science visualization. One project involves the creation and use of a volumetric renderer for hyperstack images, paired with a biology project in confocal microscopy. Students have worked to develop and test VR enabled tools for confocal microscopy visualization across headset based and CAVE based VR platforms. Two applications of the tool are presented: a rendering of Drosophila primordial germ cells coupled with automated detection and counting, and a database in development of 3D renderings of pollen grains. Another project involves the development and testing of point cloud renderers. Student work has focused on performance testing and enhancement across a range of 2D and 3D hardware, including native Quest apps. Through the process of developing these tools, students are introduced to scientific visualization concepts, while gaining practical experience with programming, software engineering, graphics, shader programming, and cross-platform design. 
    more » « less
  3. Recent research has highlighted the effectiveness of advanced building controls in reducing the energy consumption of heating, ventilation, and air-conditioning (HVAC) systems. Among advanced building control strategies, deep reinforcement learning control (DRL) shows the potential to achieve energy savings for HVAC systems and has emerged as a promising strategy. However, training DRL requires an interactive environment for the agent, which is challenging to achieve with real buildings due to time and response speed constraints. To address this challenge, a simulation environment serving as a training environment is needed, even though the DRL algorithm does not necessarily need a model. The error between the model and the real building is inevitable in this process, which may influence the efficiency of the DRL controller. To investigate the impact of model error, a virtual testbed was established. A high- fidelity Modelica-based model is developed serving as the virtual building. Three reduced-order models (ROMs) (i.e., 3R2C, Light Gradient Boosting Machine (LightGBM) and artificial neural network (ANN) models) were trained with the historical data generated from the virtual building and were embedded in the training environments of DRL. The sensitivity of ROMs and the Modelica model to random and periodical actions were tested and compared. Deploying the policy trained based on a ROM-based environment, which stands for a surrogate model in reality, into the Modelica-based virtual building testing environment, which stands for real-building, is a practical approach to implementing the DRL control. The performance of the practical DRL controller is compared with rule-based control (RBC) and an ideal DRL controller which was trained and deployed both in the virtual building environment. In the final episode with best rewards of the case study, the 3R2C, LightGBM, and ANN-based DRL outperform the RBC by 7.4%, 14.4%, and 11.4%, respectively in terms of the reward, comprising the weighted sum of energy cost, temperature violations, and the slew rate of the control signal, but falls short of the ideal Modelica-based DRL controller which outperforms RBC by 29.5%. The DRL controllers based on data-driven models are highly unstable with higher maximum rewards but much lower average rewards which might be caused by the significant prediction defect in certain action regions of the data-driven model. 
    more » « less
  4. Accurately measuring the translations of objects between images is essential in many fields, including biology, medicine, chemistry, and physics. One important application is tracking one or more particles by measuring their apparent displacements in a series of images. Popular methods, such as the center of mass, often require idealized scenarios to reach the shot noise limit of particle tracking and, therefore, are not generally applicable to multiple image types. More general methods, such as maximum likelihood estimation, reliably approach the shot noise limit, but are too computationally intense for use in real-time applications. These limitations are significant, as real-time, shot-noise-limited particle tracking is of paramount importance for feedback control systems. To fill this gap, we introduce a new cross-correlation-based algorithm that approaches shot-noise-limited displacement detection and a graphics processing unit-based implementation for real-time image analysis of a single particle. 
    more » « less
  5. null (Ed.)
    The primary goal of an assist-as-needed (AAN) controller is to maximize subjects' active participation during motor training tasks while allowing moderate tracking errors to encourage human learning of a target movement. Impedance control is typically employed by AAN controllers to create a compliant force-field around the desired motion trajectory. To accommodate different individuals with varying motor abilities, most of the existing AAN controllers require extensive manual tuning of the control parameters, resulting in a tedious and time-consuming process. In this paper, we propose a reinforcement learning AAN controller that can autonomously reshape the force-field in real-time based on subjects' training performances. The use of action-dependent heuristic dynamic programming enables a model-free implementation of the proposed controller. To experimentally validate the controller, a group of healthy individuals participated in a gait training session wherein they were asked to learn a modified gait pattern with the help of a powered ankle-foot orthosis. Results indicated the potential of the proposed control strategy for robot-assisted gait training. 
    more » « less