This paper reports a search for Higgs boson pair (
This content will become publicly available on January 1, 2025
The interpretation of Higgs data is typically based on different assumptions about whether there can be additional decay modes of the Higgs or if any couplings can be bounded by theoretical arguments. Going beyond these assumptions requires either a precision measurement of the Higgs width or an absolute measurement of a coupling to eliminate a flat direction in precision fits that occurs when
- Award ID(s):
- 2210533
- PAR ID:
- 10509774
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract hh ) production in association with a vector boson ( ) using 139 fb$$W\; {\text {o}r}\; Z$$ of proton–proton collision data at$$^{-1}$$ recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($$\sqrt{s}=13\,\text {TeV}$$ with$$W\rightarrow \ell \nu ,\, Z\rightarrow \ell \ell ,\nu \nu $$ ) and the Higgs bosons each decay into a pair of$$\ell =e, \mu $$ b -quarks. It targetsVhh signals from both non-resonanthh production, present in the Standard Model (SM), and resonanthh production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonantVhh production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonanceH , in the mass range 260–1000 GeV, that decays intohh , and the other is the production of a heavier neutral pseudoscalar resonanceA that decays into aZ boson andH boson, where theA boson mass is 360–800 GeV and theH boson mass is 260–400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models. -
A bstract We develop Standard Model Effective Field Theory (SMEFT) predictions of
σ ( →$$ \mathcal{GG} $$ h ), Γ(h → ), Γ($$ \mathcal{GG} $$ h → ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ($$ \mathcal{AA} $$ h → ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ$$ \overline{\Psi}\Psi $$ , σ to a full set of corrections at and$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ , where$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ($$ {\overline{v}}_T $$ h → ), we include results at$$ \overline{\Psi}\Psi $$ in the limit where subleading$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ m Ψ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects. -
The
discrepancy in the4.2\sigma of the muon provides a hint that may indicate that physics beyond the standard model is at play. A multi-TeV scale muon collider provides a natural testing ground for this physics. In this paper, we discuss the potential to probe the BSM parameter space that is consistent with solving the(g-2) discrepancy in the language of the SMEFT, utilizing the statistical power provided by fitting event rates collected running at multiple energies. Our results indicate the importance of including interference between the BSM and the SM amplitudes, and illustrates how a muon collider running at a handful of lower energies and with less total collected luminosity can better significantly constrain the space of relevant SMEFT coefficients than would be possible for a single high energy run.(g-2)_{\mu} -
A bstract Results are presented from a search for the Higgs boson decay H
→ Zγ, where Z→ ℓ +ℓ − withℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb− 1. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strengthμ , defined as the product of the cross section and the branching fraction relative to the standard model prediction, is extracted from a simultaneous fit to the$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ ℓ +ℓ − γ invariant mass distributions in all categories and is measured to beμ = 2. 4 ± 0. 9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to pb. The observed (expected) upper limit at 95% confidence level on$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ μ is 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions is measured to be$$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ , which agrees with the standard model prediction of 0$$ {1.5}_{-0.6}^{+0.7} $$ . 69 ± 0. 04 at the 1.5 standard deviation level. -
A bstract A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair (
) is presented using proton-proton collision data recorded by the CMS experiment at$$ \textrm{b}\overline{\textrm{b}} $$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$$ \sqrt{s} $$ − 1. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be . The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{qqh}}={1.01}_{-0.46}^{+0.55} $$ , corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{incl}.}={0.99}_{-0.41}^{+0.48} $$