skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seed‐to‐seedling transitions exhibit distance‐dependent mortality but no strong spacing effects in a Neotropical forest
Abstract Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance‐dependent mortality in the seed‐to‐seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival‐distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50‐ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree‐census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance‐dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance‐dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species.  more » « less
Award ID(s):
1754668 1754632
PAR ID:
10454752
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
2
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The effects of vertebrate seed predation on the regeneration of restored forests are not well understood because most past studies have focused on seed predation within the first few years after restoration and have measured seed removal without quantifying subsequent seedling establishment of seeds that avoid predation. Quantifying the establishment of seeds that escape predation in restored forests at later stages of regrowth is crucial for anticipating longer‐term recovery trajectories. Here, we evaluated the potential role of vertebrate seed predators in limiting recruitment of later‐successional tree species in nine forests actively restored ≥15 years prior and in four paired remnant forest fragments embedded in an agricultural landscape in southern Costa Rica. We conducted seed addition experiments with four tree species inside and outside vertebrate exclosures and used camera trapping to detect seed predators. To determine the fate of seeds that avoided predation, we also measured seedling establishment after 1 year, given that other mortality factors may compensate in the absence of vertebrate seed predation. We detected two species of birds and five species of granivorous mammals removing seeds. Seed tagging indicated that most removal resulted in predation. For three of the four tree species tested, vertebrate seed predation reduced seedling establishment. The magnitude of this effect depended on species' susceptibility to other causes of mortality during the seed‐to‐seedling transition. Our study demonstrates that vertebrate seed predators can substantially reduce later‐successional seedling recruitment in restored forests and should be considered alongside dispersal limitation and microsite conditions as factors slowing forest recovery. Abstract in Spanish is available with online material. 
    more » « less
  2. Seed distribution and deposition patterns around parent trees are strongly affected by functional traits and therefore influence the development of plant communities. To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain, we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain. Among 480,598 seeds belonging to 12 families, 17 genera, and 26 species were identified, only 54% of the species with mature trees in the community were represented in seeds collected over the 9 years, indicating a limitation in seed dispersal. Understory species were most limited; overstory species were least limited. Species with wind-dispersed seed had the least limitation, while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species; fleshy-fruited species had stronger dispersal limitations than dry-fruited species. Generalized linear mixed models showed that relative basal area had a significant positive effect on seed abundance in traps, while the contribution of diaspore traits was low for nearly all groups. These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here. These findings strengthen the knowledge that tree traits are key in explaining seed deposition patterns, at least at the primary dispersal stage. This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests. 
    more » « less
  3. Pre-dispersal seed mortality caused by premature fruit drop is a potentially important source of plant mortality, but one which has rarely been studied in the context of tropical forest plants. Of particular interest is premature fruit drop triggered by enemies, which – if density-dependent – could contribute to species co-existence in tropical forest plant communities.  We used a long-term (31 year) dataset on seed and fruit fall obtained through weekly collections from a network of seed traps in a lowland tropical forest (Barro Colorado Island, Panama) to estimate the proportion of seeds prematurely abscised for 201 woody plant species. To determine whether enemy attack might contribute to premature fruit drop we tested whether plant species abscise more of their fruit prematurely if they: (1) have attributes hypothesised to be associated with high levels of enemy attack, and (2) are known to be attacked by one enemy-group (insect seed predators). We also tested (3) whether mean rates of premature fruit drop for plant species are phylogenetically conserved. Overall rates of premature fruit drop were high in the plant community. Across all species, 39% of seeds were abscised before completing their development. Rates of premature seed abscission varied considerably among species and could not be explained by phylogeny. Premature seed abscission rates were higher in species which are known to host pre-dispersal insect seed predators and species with attributes that were hypothesised to make them more susceptible to attack by pre-dispersal enemies, namely species which (1) have larger seeds, (2) have a greater average height, (3) have temporally predictable fruiting patterns, and (4) are more abundant at the study site. Synthesis. Premature fruit drop is likely to be a major source of seed mortality for many plant species on Barro Colorado Island. It is plausible that pre-dispersal seed enemies, such as insect seed predators, contribute to community-level patterns of premature fruit drop and have the potential to mediate species co-existence through stabilising negative density dependence. Our study suggests that the role of pre-dispersal enemies in structuring tropical plant communities should be considered alongside the more commonly studied post-dispersal seed and seedling enemies. 
    more » « less
  4. Abstract Encroachment of woody plants into grasslands has occurred worldwide and includes coastal ecosystems. This conversion process is mediated by seed dispersal patterns, environmental filtering, and biotic interactions. As spatiotemporally heterogeneous, harsh environments, barrier islands present a unique set of challenges for dispersal and establishment. Environmental conditions act as filters on dispersed seeds, thereby influencing encroachment and distribution patterns. Seldom have patterns of propagule dispersal been considered in the context of woody encroachment. We quantified dispersal and post‐dispersal processes of an encroaching woody population ofMorella ceriferarelative to directional rate of encroachment and observed distribution patterns on an Atlantic coastal barrier island with strong environmental filtering. We analyzed historic foredune elevation as a proxy for reduced interior environmental stress. The dispersal kernel was leptokurtic, a common characteristic of expanding populations, but rate of encroachment has slowed since 2005. Expansion pattern was related to foredune elevation, which limits encroachment below a threshold elevation. This difference between dispersal kernel behavior and encroachment rate is due to limited availability of suitable habitat forMorellaand temporal variability in chlorides during the time of germination. Our results demonstrate that processes mediating seeds and seedling success must be accounted for to better understand establishment patterns of encroaching woody plants. 
    more » « less
  5. Animal-mediated seed dispersal is important for promoting forest regeneration and sustainability. Animal movement influences the distribution of seeds across the environment, resulting in spatially aggregated seed dispersal patterns. Animal seed dispersal patterns likely play an important role in the spatial structuring of tree populations: where a seed disperser moves influences the seed distribution. Environmental parameters that shape a disperser’s movement also influence the spatial distribution pattern of their seed dispersal. Orangutans are highly frugivorous and have been shown to disperse intact viable seeds. GPS locations were recorded for all orangutan defecations (n=1721) from 2014 to 2016 at the Cabang Panti Research Station in Gunung Palung National Park (GPNP), Indonesia. Our pilot research at GPNP measured seeds in fecal samples (n=98 fecal samples) and demonstrated that orangutan fecal samples do have intact seeds in more than 95% of t heir feces. A kernel density map was made using the defecation data to calculate the spatial density distribution of the defecations. A geographically weighted regression model (GWR) analyzed how well spatial parameters (altitude, slope, distance to river, and normalized difference vegetation index) predict the spatial density distribution of orangutan seed dispersal. All parameters in the GWR were statistically significant (R2=0.80, p<0.001) and showed low values for collinearity. The results show that orangutan seed dispersal is aggregated in space and the seed dispersal pattern is significantly shaped by environmental variables. This study provides us a better understanding of how the environment plays a role in determining animal behavior which influences the seed spatial distribution. Funders include the National Science Foundation (BCS-1638823), National Geographic Society, US Fish and Wildlife (F15AP00812), Leakey Foundation, Disney Wildlife Conservation Fund, and Nacey-Maggioncalda Foundation. 
    more » « less