skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Sample Complexity Bounds for Sample Average Approximation in Heavy-Tailed Stochastic Programming
This paper studies sample average approximation (SAA) and its simple regularized variation in solving convex or strongly convex stochastic programming problems. Under heavy-tailed assumptions and comparable regularity conditions as in the typical SAA literature, we show — perhaps for the first time — that the sample complexity can be completely free from any complexity measure (e.g., logarithm of the covering number) of the feasible region. As a result, our new bounds can be more advantageous than the state-of-the-art in terms of the dependence on the problem dimensionality.  more » « less
Award ID(s):
2213459 2016571
PAR ID:
10544093
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the 41st International Conference on Machine Learning
Date Published:
Volume:
235
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stochastic Programming (SP) is used in disaster management, supply chain design, and other complex problems. Many of the real-world problems that SP is applied to produce large-size models. It is important but challenging that they are optimized quickly and efficiently. Existing optimization algorithms are limited in capability of solving these larger problems. Sample Average Approximation (SAA) method is a common approach for solving large scale SP problems by using the Monte Carlo simulation. This paper focuses on applying clustering algorithms to the data before the random sample is selected for the SAA algorithm. Once clustered, a sample is randomly selected from each of the clusters instead of from the entire dataset. This project looks to analyze five clustering techniques compared to each other and compared to the original SAA algorithm in order to see if clustering improves both the speed and the optimal solution of the SAA method for solving stochastic optimization problems. 
    more » « less
  2. Abstract Advances in compressive sensing (CS) provided reconstruction algorithms of sparse signals from linear measurements with optimal sample complexity, but natural extensions of this methodology to nonlinear inverse problems have been met with potentially fundamental sample complexity bottlenecks. In particular, tractable algorithms for compressive phase retrieval with sparsity priors have not been able to achieve optimal sample complexity. This has created an open problem in compressive phase retrieval: under generic, phaseless linear measurements, are there tractable reconstruction algorithms that succeed with optimal sample complexity? Meanwhile, progress in machine learning has led to the development of new data‐driven signal priors in the form of generative models, which can outperform sparsity priors with significantly fewer measurements. In this work, we resolve the open problem in compressive phase retrieval and demonstrate that generative priors can lead to a fundamental advance by permitting optimal sample complexity by a tractable algorithm. We additionally provide empirics showing that exploiting generative priors in phase retrieval can significantly outperform sparsity priors. These results provide support for generative priors as a new paradigm for signal recovery in a variety of contexts, both empirically and theoretically. The strengths of this paradigm are that (1) generative priors can represent some classes of natural signals more concisely than sparsity priors, (2) generative priors allow for direct optimization over the natural signal manifold, which is intractable under sparsity priors, and (3) the resulting non‐convex optimization problems with generative priors can admit benign optimization landscapes at optimal sample complexity, perhaps surprisingly, even in cases of nonlinear measurements. 
    more » « less
  3. We revisit the inductive matrix completion problem that aims to recover a rank-r matrix with ambient dimension d given n features as the side prior information. The goal is to make use of the known n features to reduce sample and computational complexities. We present and analyze a new gradient-based non-convex optimization algorithm that converges to the true underlying matrix at a linear rate with sample complexity only linearly depending on n and logarithmically depending on d. To the best of our knowledge, all previous algorithms either have a quadratic dependency on the number of features in sample complexity or a sub-linear computational convergence rate. In addition, we provide experiments on both synthetic and real world data to demonstrate the effectiveness of our proposed algorithm. 
    more » « less
  4. The assumption that training and testing samples are generated from the same distribution does not always hold for real-world machine-learning applications. The procedure of tackling this discrepancy between the training (source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centres on finding correspondences between samples of each domain. The correspondences are obtained by treating the source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order and second-order similarities between the graphs as well as a class-based regularization. We have also developed a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic, image classification and sentiment classification datasets. Results validated that the proposed local sample-to- sample matching method out-performs traditional moment-matching methods and is competitive with respect to current local domain-adaptation methods. 
    more » « less
  5. Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes. Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives. 
    more » « less