skip to main content


Title: Sample-to-sample correspondence for unsupervised domain adaptation
The assumption that training and testing samples are generated from the same distribution does not always hold for real-world machine-learning applications. The procedure of tackling this discrepancy between the training (source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centres on finding correspondences between samples of each domain. The correspondences are obtained by treating the source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order and second-order similarities between the graphs as well as a class-based regularization. We have also developed a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic, image classification and sentiment classification datasets. Results validated that the proposed local sample-to- sample matching method out-performs traditional moment-matching methods and is competitive with respect to current local domain-adaptation methods.  more » « less
Award ID(s):
1813935
NSF-PAR ID:
10094741
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Engineering applications of artificial intelligence
Volume:
73
ISSN:
0952-1976
Page Range / eLocation ID:
80-91
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Domain adaptation (DA) addresses the real-world image classification problem of discrepancy between training (source) and testing (target) data distributions. We propose an unsupervised DA method that considers the presence of only unlabelled data in the target do- main. Our approach centers on finding matches between samples of the source and target domains. The matches are obtained by treating the source and target domains as hyper-graphs and carrying out a class-regularized hyper-graph matching using first-, second- and third-order similarities between the graphs. We have also developed a computationally efficient algorithm by initially selecting a subset of the samples to construct a graph and then developing a customized optimization routine for graph-matching based on Conditional Gradient and Alternating Direction Multiplier Method. This allows the proposed method to be used widely. We also performed a set of experiments on standard object recognition datasets to validate the effectiveness of our framework over previous approaches. 
    more » « less
  2. In this paper we propose a data-driven fault detection framework for semi-supervised scenarios where labeled training data from the system under consideration (the “target”) is imbalanced (e.g. only relatively few labels are available from one of the classes), but data from a related system (the “source”) is readily available. An example of this situation is when a generic simulator is available, but needs to be tuned on a case-by-case basis to match the parameters of the actual system. The goal of this paper is to work with the statistical distribution of the data without necessitating system identification. Our main result shows that if the source and target domain are related by a linear transformation (a common assumption in domain adaptation), the problem of designing a classifier that minimizes a miss-classification loss over the joint source and target domains reduces to a convex optimization subject to a single (non-convex) equality constraint. This second-order equality constraint can be recast as a rank-1 optimization problem, where the rank constraint can be efficiently handled through a reweighted nuclear norm surrogate. These results are illustrated with a practical application: fault detection in additive manufacturing (industrial 3D printing). The proposed method is able to exploit simulation data (source domain) to substantially outperform classifiers tuned using only data from a single domain. 
    more » « less
  3. Existing visual instance retrieval (VIR) approaches attempt to learn a faithful global matching metric or discriminative feature embedding offline to cover enormous visual appearance variations, so as to directly use it online on various unseen probes for retrieval. However, their requirement for a huge set of positive training pairs is very demanding in practice and the performance is largely constrained for the unseen testing samples due to the severe data shifting issue. In contrast, this paper advocates a different paradigm: part of the learning can be performed online but with nominal costs, so as to achieve online metric adaptation for different query probes. By exploiting easily-available negative samples, we propose a novel solution to achieve the optimal local metric adaptation effectively and efficiently. The insight of our method is the local hard negative samples can actually provide tight constraints to fine tune the metric locally. Our local metric adaptation method is generally applicable to be used on top of any offline-learned baselines. In addition, this paper gives in-depth theoretical analyses of the proposed method to guarantee the reduction of the classification error both asymptotically and practically. Extensive experiments on various VIR tasks have confirmed our effectiveness and superiority. 
    more » « less
  4. The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain- invariant representation that is also category discriminative. Domain- invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph- matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches. 
    more » « less
  5. Zero-shot learning (ZSL) for image classification focuses on recognizing novel categories that have no labeled data available for training. The learning is generally carried out with the help of mid-level semantic descriptors associated with each class. This semantic-descriptor space is generally shared by both seen and unseen categories. However, ZSL suffers from hubness, domain discrepancy and biased-ness towards seen classes. To tackle these problems, we propose a three-step approach to zero-shot learning. Firstly, a mapping is learned from the semantic-descriptor space to the image- feature space. This mapping learns to minimize both one-to- one and pairwise distances between semantic embeddings and the image features of the corresponding classes. Secondly, we propose test-time domain adaptation to adapt the semantic embedding of the unseen classes to the test data. This is achieved by finding correspondences between the semantic descriptors and the image features. Thirdly, we propose scaled calibration on the classification scores of the seen classes. This is necessary because the ZSL model is biased towards seen classes as the unseen classes are not used in the training. Finally, to validate the proposed three-step approach, we performed experiments on four benchmark datasets where the proposed method outperformed previous results. We also studied and analyzed the performance of each component of our proposed ZSL framework. 
    more » « less