Observational evidence shows marine species are shifting their geographic distribution in response to warming ocean temperatures. These shifts have implications for the US fisheries and seafood consumers. The analysis presented here employs a two-stage inverse demand model to estimate the consumer welfare impacts of projected increases or decreases in commercial landings for 16 US fisheries from 2021 to 2100, based on the predicted changes in thermally available habitat. The fisheries analyzed together account for 56% of the current US commercial fishing revenues. The analysis compares welfare impacts under two climate scenarios: a high emissions case that assumes limited efforts to reduce atmospheric greenhouse gas and a low emissions case that assumes more stringent mitigation. The present value of consumer surplus impacts when discounted at 3% is a net loss of $2.1 billion (2018 US$) in the low emissions case and $4.2 billion in the high emissions scenario. Projected annual losses reach $278–901 million by 2100.
more »
« less
This content will become publicly available on December 1, 2025
Temporal dynamics of climate change exposure and opportunities for global marine biodiversity
Abstract Climate change is exposing marine species to unsuitable temperatures while also creating new thermally suitable habitats of varying persistence. However, understanding how these different dynamics will unfold over time remains limited. We use yearly sea surface temperature projections to estimate temporal dynamics of thermal exposure (when temperature exceeds realised species’ thermal limits) and opportunity (when temperature at a previously unsuitable site becomes suitable) for 21,696 marine species globally until 2100. Thermal opportunities are projected to arise earlier and accumulate gradually, especially in temperate and polar regions. Thermal exposure increases later and occurs more abruptly, mainly in the tropics. Assemblages tend to show either high exposure or high opportunity, but seldom both. Strong emissions reductions reduce exposure around 100-fold whereas reductions in opportunities are halved. Globally, opportunities are projected to emerge faster than exposure until mid-century when exposure increases more rapidly under a high emissions scenario. Moreover, across emissions and dispersal scenarios, 76%-97% of opportunities are projected to persist until 2100. These results indicate thermal opportunities could be a major source of marine biodiversity change, especially in the near- and mid-term. Our work provides a framework for predicting where and when thermal changes will occur to guide monitoring efforts.
more »
« less
- Award ID(s):
- 2225078
- PAR ID:
- 10544283
- Publisher / Repository:
- nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cattle farming is a major source of global food production and livelihoods that is being impacted by climate change. However, despite numerous studies reporting local-scale heat impacts, quantifying the global risk of heat stress to cattle from climate change remains challenging. We conducted a global synthesis of documented heat stress for cattle using 164 records to identify temperature-humidity conditions associated with decreased production and increased mortality, then projected how future greenhouse gas emissions and land-use decisions will limit or exacerbate heat stress, and mapped this globally. The median threshold for the onset of negative impacts on cattle was a temperature-humidity index of 68.8 (95% C.I.: 67.3–70.7). Currently, almost 80% of cattle globally are exposed to conditions exceeding this threshold for at least 30 days a year. For global warming above 4°C, heat stress of over 180 days per year emerges in temperate regions, and year-round heat stress expands across all tropical regions by 2100. Limiting global warming to 2°C, limits expansion of 180 days of heat stress to sub-tropical regions. In all scenarios, severity of heat stress increases most in tropical regions, reducing global milk yields. Future land-use decisions are an important driver of risk. Under a low environmental protection scenario (SSP3-RCP7.0), the greatest expansion of cattle farming is projected for tropical regions (especially Amazon, Congo Basin, and India), where heat stress is projected to increase the most. This would expose over 500 million more cattle in these regions to severe heat risk by 2090 compared to 2010. A less resource-intensive and higher environmental protection scenario (SSP1-RCP2.6) reduces heat risk for cattle by at least 50% in Asia, 63% in South America, and 84% in Africa. These results highlight how societal choices that expand cattle production in tropical forest regions are unsustainable, both worsening climate change and exposing hundreds of millions more cattle to large increases in severe, year-round heat stress.more » « less
-
Abstract It is well understood that differences in the cues used by consumers and their resources in fluctuating environments can give rise to trophic mismatches governing the emergent effects of global change. Trophic mismatches caused by changes in consumer energetics during periods of low resource availability have received far less attention, although this may be common for consumers during winter when primary producers are limited by light. Even less is understood about these dynamics in marine ecosystems, where consumers must cope with energetically costly changes in CO2‐driven carbonate chemistry that will be most pronounced in cold temperatures. This may be especially important for calcified marine herbivores, such as the pinto abalone (Haliotis kamschatkana).H. kamschatkanaare of high management concern in the North Pacific due to the active recreational fishery and their importance among traditional cultures, and research suggests they may require more energy to maintain their calcified shells and acid/base balance with ocean acidification. Here we use field surveys to demonstrate seasonal mismatches in the exposure of marine consumers to low pH and algal resource identity during winter in a subpolar, marine ecosystem. We then use these data to test how the effects of exposure to seasonally relevant pH conditions onH. kamschatkanaare mediated by seasonal resource identity. We find that exposure to projected future winter pH conditions decreases metabolism and growth, and this effect on growth is pronounced when their diet is limited to the algal species available during winter. Our results suggest that increases in the energetic demands of pinto abalone caused by ocean acidification during winter will be exacerbated by seasonal shifts in their resources. These findings have profound implications for other marine consumers and highlight the importance of considering fluctuations in exposure and resources when inferring the emergent effects of global change.more » « less
-
Abstract Globally, coastal communities experience flood hazards that are projected to worsen from climate change and sea level rise. The 100-year floodplain or record flood are commonly used to identify risk areas for planning purposes. Remote communities often lack measured flood elevations and require innovative approaches to estimate flood elevations. This study employs observation-based methods to estimate the record flood elevation in Alaska communities and compares results to elevation models, infrastructure locations, and sea level rise projections. In 46 analyzed communities, 22% of structures are located within the record floodplain. With sea level rise projections, this estimate increases to 30–37% of structures by 2100 if structures remain in the same location. Flood exposure is highest in western Alaska. Sea level rise projections suggest northern Alaska will see similar flood exposure levels by 2100 as currently experienced in western Alaska. This evaluation of record flood height, category, and history can be incorporated into hazard planning documents, providing more context for coastal flood exposure than previously existed for Alaska. This basic flood exposure method is transferable to other areas with similar mapping challenges. Identifying current and projected hazardous zones is essential to avoid unintentional development in floodplains and improve long-term safety.more » « less
-
The efflux of carbon dioxide (CO2) from woody stems, a proxy for stem respiration, is a critical carbon flux from ecosystems to the atmosphere, which increases with temperature on short timescales. However, plants acclimate their respiratory response to temperature on longer timescales, potentially weakening the carbon-climate feedback. The magnitude of this acclimation is uncertain despite its importance for predicting future climate change. We develop an optimality-based theory dynamically linking stem respiration with leaf water supply to predict its thermal acclimation. We show that the theory accurately reproduces observations of spatial and seasonal change. We estimate the global value for current annual stem CO2efflux as 27.4 ± 5.9 PgC. By 2100, incorporating thermal acclimation reduces projected stem respiration without considering acclimation by 24 to 46%, thus reducing land ecosystem carbon emissions.more » « less
An official website of the United States government
