skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theory of thermoreversible gelation and anomalous concentration fluctuations in polyzwitterion solutions
We present a theoretical framework to investigate thermoreversible phase transitions within polyzwitterion systems, encompassing macrophase separations (MPS) and gelation. In addition, we explore concentration fluctuations near critical points associated with MPS, as well as tricritical and bicritical points at the intersection of MPS and gelation. By utilizing mean-field percolation theory and field theory formalism, we derive the Landau free energy in terms of polyzwitterion concentration with fixed dipole strengths and other experimental variables, such as temperatures and salt concentrations. As the temperature decreases, the dipoles can form cross-links, resulting in polyzwitterion associations. The associations can grow to a gel network and enhance the propensity for MPS, including liquid–liquid, liquid–gel, and gel–gel phase separations. Remarkably, the associations also impact critical behaviors. Using the renormalization group technique, we find that the critical exponents of the polyzwitterion concentration correlation functions significantly deviate from those in the Ising universality class due to the presence of polyzwitterion associations, leading to crossover critical behaviors.  more » « less
Award ID(s):
2309539
PAR ID:
10544363
Author(s) / Creator(s):
;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
2
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The behavior of polyzwitterions, constituted by dipole-like zwitterionic monomers, is significantly different from that of uniformly charged polyelectrolytes. The origin of this difference lies in the intrinsic capacity of polyzwitterions to self-associate intramolecularly and associate with interpenetrating chains driven by dominant dipolar interactions. Earlier attempts to treat polyzwitterions implicitly assume that the dipoles of zwitterion monomers are randomly oriented. At ambient temperatures, the dipolar zwitterion monomers can readily align with each other generating quadrupoles and other multipoles and thus generating heterogeneous structures even in homogeneous solutions. Towards an attempt to understand the role of such dipolar associations, we present a mean field theory of solutions of polyzwitterions. Generally, we delineate a high-temperature regime where the zwitterion dipoles are randomly oriented from a low-temperature regime where quadrupole formation is significantly prevalent. We present closed-form formulas for: (1) Coil-globule transition in the low-temperature regime, the anti-polyelectrolyte effect of chain expansion upon addition of low molar mass salt, and chain relaxation times in dilute solutions. (2) Spontaneous formation of a mesomorphic state at the borderline between the high-temperature and low-temperature regimes and its characteristics. A universal law is presented for the radius of gyration of the microgel, as a proportionality to one-sixth power of the polymer concentration. (3) Swelling equilibrium of chemically cross-linked polyzwitterion gels in both the high temperature and low-temperature regimes. Addressing the hierarchical internal dynamics of polyzwitterion gels, we present a general stretched exponential law for the time-correlation function of gel displacement vector, that can be measured in dynamic light scattering experiments. The present theory is of direct experimental relevance and additional theoretical developments to all polyzwitterion systems, and generally to biological macromolecular systems such as intrinsically disordered proteins. 
    more » « less
  2. Herein, we investigate supramolecular gelation behavior of a dendronized triphenylamine bis-urea macrocycle (1) in toluene in the presence and absence of sulfoxide chain stoppers. Macrocycle 1 assembles in the sol phase through intermolecular hy-drogen bonding interactions, spontaneously transitioning into a gel state when left undisturbed at room temperature. In tolu-ene, 1 displays a critical gelation concentration of 0.066 wt%, classifying it as a super-gelator. Furthermore, it exhibits a thermoreversible gel-sol phase transition as well as thixotropic behavior. Temperature-dependent 1H NMR spectroscopy is employed to probe the sol phase assembly of 1 with the size variations at different temperatures assessed by 2D DOSY. Rheological experiments at 10 °C were used to measure gelation response to mechanical stimuli. An amplitude sweep test highlights a linear viscoelastic region. Additionally, the self-healing behavior of gel 1 was verified through a series of strain cycles, where it showed complete recovery. Addition of chain stoppers 10% versus 1 of dimethyl sulfoxide (DMSO) and diphenyl sulfoxide (DPS) lead to weaker gels with smaller differences between the storage and the loss moduli. Rheological analysis revealed slower/partial recovery for the gel containing chain stoppers. Gels assembled from macrocyclic building blocks may retain homogeneous binding cavity and channels offering novel functional properties. 
    more » « less
  3. In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid–liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities. 
    more » « less
  4. Despite hundreds of studies involving slide-ring gels derived from cyclodextrin (CD)-based polyrotaxanes (PRs), their covalent cross-linking kinetics are not well characterized. We employ chemorheology as a tool to measure the gelation kinetics of a model slide-ring organogel derived from α -cyclodextrin/poly (ethylene glycol) PRs cross-linked with hexamethylenediisocyanate (HMDI) in DMSO. The viscoelastic properties of the gels were monitored in situ by small-amplitude oscillatory shear (SAOS) rheology, enabling us to estimate the activation barrier and rate law for cross-linking while mapping experimental parameters to kinetics and mechanical properties. Gelation time, gel point, and final gel elasticity depend on cross-linker concentration, but polyrotaxane concentration only affects gelation time and elasticity (not gel point), while temperature only affects gelation time and gel point (not final elasticity). These measurements facilitate the rational design of slide-ring networks by simple parameter selection (temperature, cross-linker concentration, PR concentration, reaction time). 
    more » « less
  5. Multicomponent macromolecular mixtures often form higher-order structures, which may display non-ideal mixing and aging behaviors. In this work, we first propose a minimal model of a quaternary system that takes into account the formation of a complex via a chemical reaction involving two macromolecular species; the complex may then phase separate from the buffer and undergo a further transition into a gel-like state. We subsequently investigate how physical parameters such as molecular size, stoichiometric coefficients, equilibrium constants, and interaction parameters affect the phase behavior of the mixture and its propensity to undergo aging via gelation. In addition, we analyze the thermodynamic stability of the system and identify the spinodal regions and their overlap with gelation boundaries. The approach developed in this work can be readily generalized to study systems with an arbitrary number of components. More broadly, it provides a physically based starting point for the investigation of the kinetics of the coupled complex formation, phase separation, and gelation processes in spatially extended systems. 
    more » « less