skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Organismal Responses to Changing Environments
Synopsis Throughout their lives, organisms must integrate and maintain stability across complex developmental, morphological, and physiological systems, all while responding to changing internal and external environments. Determining the mechanisms underlying organismal responses to environmental change and development is a major challenge for biology. This is particularly important in the face of the rapidly changing global climate, increasing human populations, and habitat destruction. In January 2024, we organized a symposium to highlight some current efforts to use modeling to understand organismal responses to short- and long-term changes in their internal and external environments. Our goal was to facilitate collaboration and communication between modelers and organismal biologists, which is one of the major aims of the Organismal Systems-type Modeling Research Coordination Network, OSyM. Accompanying this introduction are a series of papers that are aimed to enhance research and education in linking organismal biology and modeling and contribute to building a new community of scientists to tackle important questions using this approach.  more » « less
Award ID(s):
1754949
PAR ID:
10544491
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
64
Issue:
3
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 900-904
Size(s):
p. 900-904
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Pursuing cutting edge questions in organismal biology in the future will require novel approaches for training the next generation of organismal biologists, including knowledge and use of systems-type modeling combined with integrative organismal biology. We link agendas recommending changes in science education and practice across three levels: Broadening the concept of organismal biology to promote modeling organisms as systems interacting with higher and lower organizational levels; enhancing undergraduate science education to improve applications of quantitative reasoning and modeling in the scientific process; and K-12 curricula based on Next Generation Science Standards emphasizing development and use of models in the context of explanatory science, solution design, and evaluating and communicating information. Out of each of these initiatives emerges an emphasis on routine use of models as tools for hypothesis testing and prediction. The question remains, however, what is the best approach for training the next generation of organismal biology students to facilitate their understanding and use of models? We address this question by proposing new ways of teaching and learning, including the development of interactive web-based modeling modules that lower barriers for scientists approaching this new way of imagining and conducting integrative organismal biology. 
    more » « less
  2. Synopsis In response to rapidly changing environmental conditions, many organisms are experiencing shifts in geographic ranges and in the timing and expression of key life-history traits, which have important effects on fitness. However, the physiological mechanisms that mediate these phenotypic responses, such as endocrine and other signaling pathways are not well understood. This information will be critical for predicting organismal responses to climate change because physiological mechanisms are often highly responsive to environmental cues and influence the phenotypic variation available to selection. Additionally, they often integrate suites of correlated traits and are thus expected to influence the evolutionary response to selection. The overarching goals of this symposium were to gain novel insights into the physiological mechanisms that underlie organismal responses to rapidly changing environmental conditions and to identify gaps in knowledge and experimental approaches to advance the field. Here we review and discuss the symposium contributions and the research themes that emerged as important foci for future studies. 
    more » « less
  3. Moura, Mario R. (Ed.)
    Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current modeling approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic understanding of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  4. Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current model- ing approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic under- standing of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  5. Abstract The evolution of tissue on a chip systems holds promise for mimicking the response of biological functionality of physiological systems. One important direction for tissue on a chip approaches are neuron‐based systems that could mimic neurological responses and lessen the need for in vivo experimentation. For neural research, more attention has been devoted recently to understanding mechanics due to issues in areas such as traumatic brain injury (TBI) and pain, among others. To begin to address these areas, a 3D Nerve Integrated Tissue on a Chip (NITC) approach combined with a Mechanical Excitation Testbed (MET) System is developed to impose external mechanical stimulation toward more realistic physiological environments. PC12 cells differentiated with nerve growth factor, which were cultured in a controlled 3D scaffolds, are used. The cells are labeled in a 3D NITC system with Fluo‐4‐AM to examine their calcium response under mechanical stimulation synchronized with image capture. Understanding the neural responses to mechanical stimulation beyond 2D systems is very important for neurological studies and future personalized strategies. This work will have implications in a diversity of areas including tissue‐on‐a‐chip systems, biomaterials, and neuromechanics. 
    more » « less