Abstract Understanding the assembly of plant-pollinator communities has become critical to their conservation given the rise of species invasions, extirpations, and species’ range shifts. Over the course of assembly, colonizer establishment produces core interaction patterns, called motifs, which shape the trajectory of assembling network structure. Dynamic assembly models can advance our understanding of this process by linking the transient dynamics of colonizer establishment to long-term network development. In this study, we investigate the role of intra-guild indirect interactions and adaptive foraging in shaping the structure of assembling plant-pollinator networks by developing: 1) an assembly model that includes population dynamics and adaptive foraging, and 2) a motif analysis tracking the intra-guild indirect interactions of colonizing species throughout their establishment. We find that while colonizers leverage indirect competition for shared mutualistic resources to establish, adaptive foraging maintains the persistence of inferior competitors. This produces core motifs in which specialist and generalist species coexist on shared mutualistic resources which leads to the emergence of nested networks. Further, the persistence of specialists develops richer and less connected networks which is consistent with empirical data. Our work contributes new understanding and methods to study the effects of species’ intra-guild indirect interactions on community assembly. 
                        more » 
                        « less   
                    
                            
                            The Interplay of Binary and Quantitative Structure on the Stability of Mutualistic Networks
                        
                    
    
            Synopsis Understanding how the structure of biological systems impacts their resilience (broadly defined) is a recurring question across multiple levels of biological organization. In ecology, considerable effort has been devoted to understanding how the structure of interactions between species in ecological networks is linked to different broad resilience outcomes, especially local stability. Still, nearly all of that work has focused on interaction structure in presence-absence terms and has not investigated quantitative structure, i.e., the arrangement of interaction strengths in ecological networks. We investigated how the interplay between binary and quantitative structure impacts stability in mutualistic interaction networks (those in which species interactions are mutually beneficial), using community matrix approaches. We additionally examined the effects of network complexity and within-guild competition for context. In terms of structure, we focused on understanding the stability impacts of nestedness, a structure in which more-specialized species interact with smaller subsets of the same species that more-generalized species interact with. Most mutualistic networks in nature display binary nestedness, which is puzzling because both binary and quantitative nestedness are known to be destabilizing on their own. We found that quantitative network structure has important consequences for local stability. In more-complex networks, binary-nested structures were the most stable configurations, depending on the quantitative structures, but which quantitative structure was stabilizing depended on network complexity and competitive context. As complexity increases and in the absence of within-guild competition, the most stable configurations have a nested binary structure with a complementary (i.e., anti-nested) quantitative structure. In the presence of within-guild competition, however, the most stable networks are those with a nested binary structure and a nested quantitative structure. In other words, the impact of interaction overlap on community persistence is dependent on the competitive context. These results help to explain the prevalence of binary-nested structures in nature and underscore the need for future empirical work on quantitative structure. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10544492
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 64
- Issue:
- 3
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 827-840
- Size(s):
- p. 827-840
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Mutualistic networks are vital ecological and social systems shaped by adaptation and evolution. They involve bipartite cooperation via the exchange of goods or services between actors of different types. Empirical observations of mutualistic networks across genres and geographic conditions reveal correlated nested and modular patterns. Yet, the underlying mechanism for the network assembly remains unclear. We propose a niche-based adaptive mechanism where both nestedness and modularity emerge simultaneously as complementary facets of an optimal niche structure. Key dynamical properties are revealed at different timescales. Foremost, mutualism can either enhance or reduce the network stability, depending on competition intensity. Moreover, structural adaptations are asymmetric, exhibiting strong hysteresis in response to environmental change. Finally, at the evolutionary timescale we show that the adaptive mechanism plays a crucial role in preserving the distinctive patterns of mutualism under species invasions and extinctions.more » « less
- 
            Clifford Whitcomb (Ed.)Analyzing interactions between actors from a systems perspective yields valuable information about the overall system's form and function. When this is coupled with ecological modeling and analysis techniques, biological inspiration can also be applied to these systems. The diagnostic value of three metrics frequently used to study mutualistic biological ecosystems (nestedness, modularity, and connectance) is shown here using academic engineering makerspaces. Engineering students get hands‐on usage experience with tools for personal, class, and competition‐based projects in these spaces. COVID‐19 provides a unique study of university makerspaces, enabling the analysis of makerspace health through the known disturbance and resultant regulatory changes (implementation and return to normal operations). Nestedness, modularity, and connectance are shown to provide information on space functioning in a way that enables them to serve as heuristic diagnostics tools for system conditions. The makerspaces at two large R1 universities are analyzed across multiple semesters by modeling them as bipartite student‐tool interaction networks. The results visualize the predictive ability of these metrics, finding that the makerspaces tended to be structurally nested in any one semester, however when compared to a “normal” semester the restrictions are reflected via a higher modularity. The makerspace network case studies provide insight into the use and value of quantitative ecosystem structure and function indicators for monitoring similar human‐engineered interaction networks that are normally only tracked qualitatively.more » « less
- 
            Abstract In many real-world networks, the ability to withstand targeted or global attacks; extinctions; or shocks is vital to the survival of the network itself, and of dependent structures such as economies (for financial networks) or even the planet (for ecosystems). Previous attempts to characterise robustness include nestedness of mutualistic networks or exploration of degree distribution. In this work we present a new approach for characterising the stability and robustness of networks with all-positive interactions by studying the distribution of the k-shell of the underlying network. We find that high occupancy of nodes in the inner and outer k-shells and low occupancy in the middle shells of financial and ecological networks (yielding a “U-shape” in a histogram of k-shell occupancy) provide resilience against both local targeted and global attacks. Investigation of this highly-populated core gives insights into the nature of a network (such as sharp transitions in the core composition of the stock market from a mix of industries to domination by one or two in the mid-1990s) and allow predictions of future network stability, e.g., by monitoring populations of “core” species in an ecosystem or noting when stocks in the core-dominant sector begin to move in lock-step, presaging a dramatic move in the market. Moreover, this “U-shape” recalls core-periphery structure, seen in a wide range of networks including opinion and internet networks, suggesting that the “U-shaped” occupancy histogram and its implications for network health may indeed be universal.more » « less
- 
            Abstract Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
