skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanochemical synthesis and application of mixed-metal copper–ruthenium HKUST-1 metal–organic frameworks in the electrocatalytic oxygen evolution reaction
Novel electrode materials for electrocatalytic hydrogen generation are investigated for increasing the activity of expensive noble-metal components.  more » « less
Award ID(s):
1854174
PAR ID:
10544531
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Mechanochemistry
Volume:
1
Issue:
3
ISSN:
2976-8683
Page Range / eLocation ID:
296 to 307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Group 13 aminoxy complexes, (L)E(TEMPO)3(TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl; L = THF (tetrahydrofuran) or Py (pyridine); E = Al, Ga, In), display ambiphilic reactivity with H2and function as synthons for the preparation of materials. 
    more » « less
  2. Abstract Metal–organic frameworks (MOFs) are crystalline, 2‐ and 3‐dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low‐valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low‐valent MOFs and offers a perspective on the future development of these materials. 
    more » « less
  3. We explore a possibility to control magnetic dipole emission with plasmonic cavities, placing Eu3+emitters inside profile-modulated metal-dielectric-metal structures. Significant variations in the branching ratio of the magnetic and electric dipole transitions are observed as the function of the thickness of the intermediate layer. The experimental results are confirmed with numerical simulations which account for cavity and gap plasmon resonances and predict modifications in the spontaneous emission spectrum as the function of the gap size and a strong directionality of the emission for small thicknesses of the intermediate layer. The implications of having a competition between electric and magnetic dipole relaxation channels in Eu3+are discussed. 
    more » « less
  4. Abstract Organophosphines have garnered attention from many avenues ranging from agriculture to fine chemicals. One‐time use of phosphate resources has made sustainable use of phosphorus overall imperative. Hydrophosphination serves as an efficient method to selectively prepare P−C bonds, furnishing a range of phosphorus‐containing molecules while maximizing the efficient use of phosphorus. Since the first report in 1958, a wide array of catalysts have appeared for hydrophosphination, a reaction that is spontaneous in some instances. This review presents a representative view of the literature based on known catalysts through mid‐2022, highlighting extensions to unique substrates and advances in selectivity. While several excellent reviews have appeared for aspects of this transformation, this review is meant as a comprehensive guide to reported catalysts. 
    more » « less
  5. Abstract This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries. 
    more » « less