In recent years India has been increasingly experiencing widespread floods induced by large‐scale extreme rainfall events (LEREs). LEREs are mainly associated with monsoon low‐pressure systems (LPS). The forecast of these high‐flood‐potential events, however, has remained challenging. Here, we compare LPSs of the summer monsoon that led to LEREs (LPS‐Lg) and strong LPSs that did not result in LEREs (LPS‐noLg) over central India for the period 1979–2012. We show that having a strong LPS is not a sufficient condition to produce LEREs, and the LPS‐Lgs are accompanied by secondary cyclonic vortices (SCVs). The simultaneous existence of an LPS and an SCV creates a giant midtropospheric vortex. SCVs enhance dynamic lifting, static instability, and moisture transport from the Arabian Sea that precondition the atmosphere for deep convection. SCVs also slow down the propagation of LPSs. We show that the interaction of synoptic‐scale systems can lead to LEREs even if individual systems are not strong enough.
During certain years, a synoptic scale vortex called the monsoon onset vortex (MOV) forms within the northward advancing zone of precipitating convection over the Arabian Sea. The MOV does not form each year and the reason is unclear. Since the Madden‐Julian Oscillation (MJO) is known to modulate convection and tropical cyclones in the tropics, we examined its role in the formation of the MOV. While the convective and transition phases of the MJO do not always lead to MOV formation, the suppressed phase of the MJO hinders the formation of the MOV more consistently. This asymmetric relationship between the MJO and MOV can be partially explained by the modulation of the large‐scale environment, measured by a tropical cyclone genesis index. It also suggests that the Arabian Sea is generally near a critical state that is favorable for MOV formation during the monsoon onset period.
more » « less- Award ID(s):
- 2329297
- PAR ID:
- 10544709
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 17
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The Madden–Julian Oscillation (MJO) is a large-scale tropical weather system that generates heavy rainfall over the equatorial Indian and western Pacific Oceans on a 40–50 day cycle. Its circulation propagates eastward around the entire world and impacts tropical cyclone genesis, monsoon onset, and mid-latitude flooding. This study examines the mechanism of the MJO in the Lagrangian atmospheric model (LAM), which has been shown to simulate the MJO accurately, and which predicts that MJO circulations will intensify as oceans warm. The LAM MJO’s first baroclinic circulation is projected onto a Kelvin wave leaving a residual that closely resembles a Rossby wave. The contribution of each wave type to moisture and moist enthalpy budgets is assessed. While the vertical advection of moisture by the Kelvin wave accounts for most of the MJO’s precipitation, this wave also exports a large amount of dry static energy, so that in total, it reduces the column integrated moist enthalpy during periods of heavy precipitation. In contrast, the Rossby wave’s horizontal circulation builds up moisture prior to the most intense convection, and its surface wind perturbations enhance evaporation near the center of MJO convection. Surface fluxes associated with the Kelvin wave help to maintain its circulation outside of the MJO’s convectively active region.more » « less
-
Abstract The Indian monsoon is of utmost concern to agriculture, the economy, and the livelihoods of billions in South Asia. However, little attention has been paid to the possibility of distinct subseasonal episodes phase-locked in the Indian monsoon annual cycle. This study addresses this gap by utilizing the self-organizing map (SOM) method to objectively classify six distinct subseasonal stages based on the 850-hPa wind fields. Each subseasonal stage ranges from 23 to 90 days. The Indian summer monsoon (ISM) consists of three substages, the ISM-onset, ISM-peak, and ISM-withdrawal, altogether contributing to 82% of the annual precipitation. The three substages signify the rapid northward advance, dominance, and gradual southward retreat of southwesterlies from mid-May to early October. The winter monsoon also comprises three substages (fall, winter, and spring), distinguishable by the latitude of the Arabian Sea high pressure ridge and hydrological conditions. This study proposes two compact indices based on zonal winds in the northern and southern Arabian Sea to measure the winter and summer monsoons, respectively. These indices capture the development and turnabouts of the six SOM-derived stages and can be used for subseasonal monsoon monitoring and forecasts. The spring and the ISM-onset episodes are highly susceptible to compound hazards of droughts and heatwaves, while the greatest flood risk occurs during the ISM-peak stage. The fall stage heralds the peak season for tropical storms over the Arabian Sea and the Bay of Bengal. The annual start and end dates of the ISM-peak are highly correlated (0.6–0.8) with the criteria-based dates proposed previously, supporting the delineation of the Indian monsoon subseasonal features.
Significance Statement This research explores the existence of subseasonal features in the Indian monsoon annual cycle. Through the use of machine learning, we discover that the Indian summer monsoon and winter monsoon each consist of three substages. These substages’ evolution can be measured by two compact indices proposed herein, which can aid in subseasonal monsoon monitoring and forecasts in South Asia. Pertaining to hazard adaptations, this work pinpoints the subseasonal episodes most susceptible to droughts, heatwaves, floods, and tropical storms. High correlations are obtained when validating the substages’ yearly start and end dates against those documented in the existing literature, offering credibility to the subseasonal features of the Indian monsoon.
-
Abstract Abrupt monsoon onsets/retreats are indispensable targets for climate prediction and future projection, but the origins of their abruptness remain elusive. This study establishes the existence of three climatological Madden-Julian Oscillation (CMJO) episodes contributing to the rapid Australian summer monsoon retreat in mid-March, the South China Sea (or East Asian) summer monsoon onset in mid-May, and the Indian summer monsoon onset in early June. The CMJO displays a dynamically coherent convection-circulation structure resembling its transitionary counterpart, demonstrating its robustness as a convectively coupled circulation system and the tendency of the transient MJOs’ phase-lock to the annual cycle. The CMJO is inactive during the boreal winter due to destructive year-to-year modulations of El Niño-Southern Oscillation. We hypothesize that the interaction between atmospheric internal variability (MJO) and the insolation-forced slow annual cycle generates the sudden monsoon withdrawal/onset during the boreal spring. Understanding the factors determining the timing and location of the MJO’s phase-locking and its variability is vital for monsoon forecasting and climate projection.
-
Abstract Barrier layers (BLs) in the Arabian Sea may lead to increased mixed layer (ML) warming or cooling relative to non‐BL conditions, depending on differences in ML properties and atmospheric forcing. We use 13 years of profiling float data from the Arabian Sea to identify when and where each impact is likely based on analysis of the ML temperature tendency. We use a novel method based on the vertical spice profile to identify BLs and their characteristics. BLs are most likely to increase warming during the northeast monsoon, owing to temperature inversions, preceding the development of the miniwarm pool and onset of the southwest monsoon. This effect is nonuniform and is counteracted in some regions by increased penetration of solar radiation below the shallower ML associated with BL. Relative rates of cooling increase in the presence of BL during the southwest monsoon; intermonsoon periods show little net effect from BL.